
www.manaraa.com

www.manaraa.com

System-on-Chip Architectures
and Implementations for
Private-Key Data Encryption

www.manaraa.com

System-on-Chip Architectures
and Implementations for
Private-Key Data Encryption

Maire McLoone and John V. McCanny
Queen 's University
Belfast, Northern Ireland

Springer-Science+Business Media, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

McLoone, Maire.
System-on-chip architectures and implementations for private-key data encryption/

Maire McLoone, John V. McCanny.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-4613-4897-9 ISBN 978-1-4615-0043-8 (eBook)

DOl 10.1007/978-1-4615-0043-8

1. Computer security. 2. Data encryption (Computer science). 3. Cryptography. 4.
Computer architecture. I. McCanny, J. V. II. Title.

QA76.9.A25M4352003
005.8-dc22

ISBN 978-1-4613-4897-9

©2003 Springer Science+Business Media New York
Originally published by Kluwer Academic / Plenum Publishers in 2003
Softcover reprint of the hardcover I st edition 2003

1098765432

A c.r.P. record for this book is available from the Library of Congress

All rights reserved

2003054468

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise,
without written permission from the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive
use by the purchaser of the work

www.manaraa.com

Acknowledgments

I would like to express my thanks to Amphion Semiconductor Ltd., the
European Social Fund and Queen's University Belfast for the financial
support provided to me during my PhD research work, on which this book is
based.

Thanks to all my colleagues in the DSP and Telecommunications group
for their help and friendship. Thanks also to Richard Ruddock for providing
excellent technical support and to Paula Dougherty and Laurence Downey
for all their help.

A very special thanks to Shane for his help, patience, love and friendship.
Finally, I am indebted to my Mum and Dad, my brothers, Sean and

Seamus, and sisters, Eibhlin and Nabla, for their love and support over the
years.

Maire McLoone

v

www.manaraa.com

Foreword

It is a pleasure and an honor to write a foreword for this book.

In the (quite recent) past, personal and sensitive data and the
computations on these data were centralized within a well-described and
physically protected environment.

Since then, the world has evolved to one where data and computations
are distributed over a wide range of computing devices, connected together
through wired and wireless links. This has ignited a revolution in security
issues and protocols: how to protect privacy, authentication, integrity, and so
on in this distributed connected computing world.

Key to this are efficient implementations of the cryptographic algorithms
that support these security protocols. Here lies the contribution of this book:
it is one of the first ones, if not the first, which focuses on efficient hardware
implementation strategies for secret key algorithms. AES and DES, the main
secret-key algorithms in use today are the core contributions of this work,
not from a mathematical viewpoint, but from an implementation viewpoint.
Secondly, the focus is on efficient architectures and design strategies for
FPGA and ASIC realizations. The optimizations for these platforms are very
different from traditional software implementations. This makes this book of
a very practical use to any engineer in need for efficient realizations of AES
and DES.

Ingrid Verbauwhede, Ph.D.

VB

www.manaraa.com

Preface

In recent years there has been an increased awareness of Information
Technology (IT) security-related issues. Personal computers are no longer
used exclusively in the office - the use of home and recreational computers
has increased dramatically and the majority of these have Internet access to
resources such as email, news groups and on-line shopping and banking.
However, this widespread availability and acceptance of computers has also
increased the number of people with an ability to compromise data. This has
led to a very high percentage of traffic that requires safeguarding. One of the
most fundamental and widespread tools used in providing Internet security is
encryption. In an effort to increase consumer confidence in electronic
transactions, encryption techniques are now in widespread use and are in
high demand. Cryptography has become one of the main tools for providing
privacy, trust, access control, secure electronic payments and in general,
secure data communication. This need for high-strength encryption will
continue as there is an overwhelming demand for new and improved
communication technologies. For example, a fast growing area of interest is
that of Wireless Local Area Networks (WLANs) for which security is an
essential aspect. Due to their wireless nature WLANs are more vulnerable
than their wired counterparts and as a result of this inherent vulnerability
data security is crucial.

The rapid developments in communication systems have resulted in a
need to perform encryption on data in real-time. Encryption of digital
information in real-time holds the key to the successful growth of major
applications in areas such as satellite communications and electronic
commerce. Cryptography is typically a mathematically intensive process
which, to date, has mainly been implemented in software. However, such

IX

www.manaraa.com

x Preface

methods are slow and cannot cope with the demands of rapidly growing
broadband communication systems. Therefore, innovative hardware
solutions involving mapping of complex mathematical operations onto
special purpose silicon circuit architectures provide the only feasible
solution.

Secure communications systems often require the capacity to encrypt
messages with several different algorithms in addition to the need to change
keys regularly. The concept of re-usable, parameterisable cryptographic
designs is ideally suited to meeting these requirements. Re-usable silicon
designs of this nature are known as Intellectual Property (IP) cores. IP cores
are also an integral part of System-on-Chip (SoC) design. This emerging
technique involves the integration of pre-designed IP cores onto a single chip
in order to implement highly complex applications.

In this book, new generic silicon architectures for the Data Encryption
Standard (DES) and the Rijndael symmetric key encryption algorithms are
presented. DES, the US Federal Information Processing Standard (FIPS) for
over twenty years, was replaced by the Rijndael algorithm in November
2001. The generic architectures can be utilised to rapidly and effortlessly
generate cores, which support numerous application requirements, most
importantly, different modes of operation and encryption and decryption
capabilities. Hash algorithms, which provide authentication, are an essential
element of any cryptographic application. Authentication offers assurance
about the content and origin of communicated messages. Efficient silicon
architectures of the SHA-l, SHA-384, SHA-512 and HMAC-SHA-l hash
functions are also described. The Internet Protocol Security (IPSec) standard
is an application which employs both encryption and authentication. A
single-chip IPSec architecture is presented that comprises the generic
Rijndael design and a highly efficient HMAC-SHA-l implementation. This
architecture can also be utilised to provide the encryption and authentication
needs of applications such as Wireless Local Area Networks (WLANs) and
the Secure Electronic Transaction (SET) and Secure Socket Layer (SSL)
protocols.

In the opinion of the authors, highly efficient hardware implementations
of cryptographic algorithms are provided in this book. However, these are
not hard-fast solutions. The aim of the book is to provide an excellent guide
to the design and development process involved in the translation from
encryption algorithm to silicon chip implementation.

www.manaraa.com

Preface xi

Overview of the Chapters
Chapter 1 provides background theory on both classical and modem

cryptographic techniques. Examples of classical substitution and
transposition ciphers are given and modem public and private key
algorithms, hash functions and digital signatures are discussed. Typical
cryptanalytic attacks are described. The motivation for implementing
cryptographic algorithms in hardware is also outlined. The recent
development of the Advanced Encryption Standard (AES) is reviewed. Each
of the five AES finalists is compared in terms of structure, hardware
implementation performance, advantages and disadvantages. The finite field
mathematics in GF(28) employed by the AES winner, Rijndael, is also
explained in this chapter.

Perhaps the best known encryption algorithm, the Data Encryption
Standard is introduced in chapter 2. A detailed description of the DES
symmetric key algorithm is provided. Previous work on hardware-based
DES designs is reviewed. This chapter describes a novel generic
parameterisable DES architecture from which designs can be easily created
for a range of specifications, such as scalability, single or Triple-DES
functionality and modes of operation. A new key scheduling technique is
also discussed, which, in a pipelined design, allows for the loading of
different keys every clock cycle. The method is presented in relation to DES
but can be applied to any pipelinable private key encryption algorithm.

In chapter 3 the Rijndael private key algorithm is described. A review of
existing Rijndael hardware designs is also provided. Two hardware-based
fully pipelined Rijndael chip designs are presented which were among the
first published implementations since the selection of Rijndael as the AES.
The first is a novel generic parameterisable encryption-only architecture,
which can generate designs to support each of the three key lengths required
by the standard. In the second pipelined architecture the similarities between
encryption and decryption are examined and exploited, so that a high
throughput design is achieved, while avoiding excess memory utilisation. A
comparison between these new architectures and existing work is provided.

The Rijndael systems of chapter 3 are developed further in chapter 4. A
Look-Up Table (LUT) based methodology is considered, which can achieve
very high-speed AES designs, albeit at the expense of silicon area. To
illustrate the technique, 128-bit key Rijndael iterative and pipelined
encryptor designs are implemented in which the complex operations of the
algorithm are replaced by LUTs. This chapter also presents a novel generic
and migratable Rijndael architecture. Cores generated from this support each
of the three AES key lengths, both encryption and decryption and four
modes of operation. A hardware design that involves on-the-fly generation

www.manaraa.com

xii Preface

of sub-keys during decryption is also described. Once again, a comparison is
provided between these new architectures and existing design work.

In chapter 5, hash algorithms are studied and security applications, which
incorporate both hash and symmetric-key encryption algorithms, are
considered. The SHA-l, SHA-384, SHA-S12 and HMAC-SHA-l hash
algorithms are described in detail. One of the first hardware designs of the
SHA-384 and SHA-S12 algorithms is outlined. The Internet Protocol
Security (IPSec) standard, which requires authentication and encryption, is
described in the chapter. A novel single-chip IPSec architecture is presented,
which comprises the generic Rijndael design outlined in chapter 4 and a
HMAC-SHA-I design. Other applications in which the IPSec architecture
can be utilised are also examined.

The book finishes with a concluding summary and discusses directions for
possible future research.

Terminology
Cryptography: The art or science of disguising messages.

Plaintext: The original message - also known as cleartext.

Encryption: The process of encoding or disguising a message to
hide its contents.

Ciphertext: The encrypted or disguised message.

Decryption: The process of retrieving the original message
from the ciphertext.

Key: A key word, number or electronic code that is used
in the encryption and decryption process.

Cipher!
Cryptosystem: A system which performs encryption and

decryption.

Cryptanalysis: The art or science of breaking cryptosystems.

Cryptology: The study of both cryptography and cryptanalysis.

www.manaraa.com

Contents

1 BACKGROUND THEORY 1

1.1. Introduction
1.2. Cryptographic Algorithms 2
1.3. Cryptanalysis 8
1.4. Hardware-Based Cryptographic Implementation 10
1.5. AES Development Effort 14
1.6. Rijndael Algorithm Finite Field Mathematics 21
1.7. Conclusions 26

2 DES ALGORITHM ARCHITECTURES AND
IMPLEMENTATIONS 28

2.1. Introduction 28
2.2. DES Algorithm Description 29
2.3. DES Modes of Operation 32
2.4. Triple-DES 37
2.5. Review of Previous Work 38
2.6. Generic Parameterisable DES IP Architecture Design 40
2.7. Novel Key Scheduling Method 48
2.8. Conclusions 53

3 RlJNDAEL ARCHITECTURES AND IMPLEMENTATIONS 57

3.1. Introduction 57
3.2. Rijndael Algorithm Description 58

xiii

www.manaraa.com

XIV

3.3. Review of Rijndael Hardware Implementations
3.4. Design of High Speed Rijndael Encryptor Core
3.5. EncryptoriDecryptor Core
3.6. Performance Results
3.7. Conclusions

Contents

63
65
70
72
74

4 FURTHER RIJNDAEL ALGORITHM ARCHITECTURES
AND IMPLEMENTATIONS 77

4.1. Introduction
4.2. Look-Up Table Based Rijndael Architecture
4.3. Rijndae1 Modes of Operation
4.4. Overall Generic AES Architecture
4.5. Conclusions

77
78
84
87
97

5 HASH ALGORITHMS AND SECURITY APPLICATIONS 99

5.1. Introduction 99
5.2. Internet Protocol Security (IPSec) 100
5.3. IPSec Authentication Algorithms 105
5.4. IPSec Cryptographic Processor Design 107
5.5. Performance Results 112
5.6. IPSec Cryptographic Processor Use in Other Applications 115
5.7. SHA-384/SHA-512 Processor 117
5.8. Conclusions 121

6 CONCLUDING SUMMARY AND FUTURE WORK 125

6.1. Concluding Summary
6.2. Future work

Appendix A - Modulo Arithmetic

Appendix B - DES Algorithm Permutations and S-Boxes

Appendix C - LUTs Utilised in Rijndael Algorithm

Appendix D - LUTs in LUT-Based Rijndael Architecture

Appendix E - SHA-384/SHA-512 Constants

References

Index

125
128

131

135

139

143

151

153

159

www.manaraa.com

Chapter 1

BACKGROUND THEORY

1.1. Introduction

The word 'cryptography' is derived from the greek words kryptos, which
means hidden and graphia which means writing. Cryptography is the art of
keeping secret the contents of a message transmitted over an unsecured
communication channel. For example, the sender encrypts a message and
thus, transforms its contents into an unintelligible form. The encrypted
message or ciphertext is then transmitted over an unsecured channel. The
receiver must decrypt the ciphertext to obtain the original message by
performing an inverse transformation. The secrecy and security of the
system relies on only the recipient having knowledge of the decryption
transformation.

In the 1970s, Diffie and Hellman predicted that 'the development of
computer controlled communication networks' would provide 'effortless and
inexpensive contact between people or computers on opposite sides of the
world, replacing most mail and many excursions, with telecommunications'
[1]. In the last decade, their prediction has become a reality with the
emergence of email, e-commerce, Virtual Private Networks (VPNs) and
wireless communication technology. Private documents, which in the past,
would have been hand-delivered and kept under lock and key are now
typically created, sent and stored electronically [2]. However, this electronic
age has led to an increased risk to information security and privacy and thus,
the need for encryption. Traditionally, cryptography was only used by the
military and diplomatic services for secure communication. However, today
it is one of the principal tools employed to maintain privacy and
confidentiality [3].

www.manaraa.com

2 Chapter 1

The history of cryptographic techniques from classical encryption to
modem day algorithms is described in this chapter. Well-known attacks
performed on cryptosystems are outlined. The advantages of hardware-based
cryptographic implementations are also discussed. The development of the
most recently designed cryptographic algorithm, the Advanced Encryption
Standard (AES), is explained. Advantages and disadvantages of each of the
five AES finalists, MARS, Rijndael, RC6, Twofish and Serpent are
provided. Finally, the finite field mathematics utilised in the AES winner,
Rijndael, is described.

1.2. Cryptographic Algorithms

1.2.1. Classical Encryption

One of the earliest accounts of secret writing dates back to the conflicts
between Greece and Persia in the fifth century BC [4]. In 480 BC, Xerxes,
leader of the Persians planned to attack the Athenian naval fleet stationed in
the Bay of Salamis. The Persian fleet greatly outnumbered that of the
Greeks. However, Demaratus, a Greek living in exile in a Persian city,
decided to warn the Greeks. He scraped the wax from a wooden tablet, wrote
of the planned assault and then reapplied the layer of wax, thus, hiding the
message. When the tablet reached the Greeks, the layer of wax was scraped
off and the message retrieved. Unknown to Xerxes, the Greeks were
prepared for his attack. They enticed the Persian fleet into the Bay of
Salamis, surrounded them and thwarted the assault.

Many famous historical figures such as Julius Caesar, Francis Bacon,
Louis XIV, Cardinal Mazarin and Napoleon invented their own ciphers and
used them for their secret correspondence. During the American War of
Independence George Washington's spies employed a code system in which
words were replaced with numbers from a code book. At the tum of the
century, the French military used a ciphering machine known as Bazeries
cylinder (named after the officer who invented it in 1891). Perhaps the most
famous of all cryptography systems was the Enigma machine developed by
the Germans during World War II. The success of Alan Turing and other
code-breakers in cracking this cryptosystem had a significant bearing on the
outcome ofthe war.

Substitution Cipher
Prior to the advent of computers encryption algorithms were primarily

based on character substitution or transposition [5]. Julius Caesar was one of
the first to use substitution ciphers to communicate in both domestic and
military affairs [6]. In a substitution cipher, each letter in the plaintext is

www.manaraa.com

Background Theory 3

replaced with a different letter to form the ciphertext. The cipher used by
Julius Caesar, known as the Caesar cipher, replaced every letter in a message
with the letter 3 places to the right of it in the alphabet. For example, the
letter A would be replaced by D and the letter B by E. An example of the
Caesar cipher is given in Table 1-1.

Table 1-1. Example of the Caesar Cipher

Plaintext
Ciphertext

CRY P TOG RAP H Y
F U B S W R J U D S K B

Polyalphabetic substitution ciphers use multiple alphabets to conceal the
contents of a message. A well-known example is the Vigenere cipher. The
Vigenere cipher uses 26 distinct alphabets. The first alphabet comprises all
the letters shifted one place to the left. In the second alphabet, the letters are
shifted two places and similarly for the remaining 24 alphabets. The
alphabets are used in conjunction with a keyword, which is written above the
message and repeated as required depending on the message length. Each
letter in the keyword determines which alphabet is used to encrypt the
corresponding message letter, as illustrated in Table 1-2. The Vigenere
alphabets used in the example are given in Table 1-3.

Table 1-2. Example of the Vigen ere Cipher

Keyword S E C R ETSECR E T
Plaintext C R Y P TOG RAP H Y

Ciphertext U VA G X H Y V C G L R

Table 1-3. Alphabets Utilised in Vigen ere Cipher Example

A B C D E F G H I J K L M N 0 p Q R S T U V W X Y Z
C C D E F G H I J K L M N 0 p Q R S T U V W X Y Z A B
E E F G H I J KL M N 0 p Q R S T U VWX Y Z A B C D
R R S T U V W X Y Z A B C D E F G H I J K L M N o p Q
s S T U V W X Y Z A B C D E F G H I J K L M N 0 P Q R
T T U V W X Y Z A B C D E F G H I J K L M N 0 P Q R S

Transposition Cipher
In transposition ciphers, also known as permutation ciphers, the characters

in a message are rearranged or transposed. In a columnar transposition
cipher, the plaintext is inserted into a matrix in rows and the ciphertext is
deduced by writing the letters down from each column. An example of a
columnar transposition cipher is provided in Table 1-4.

www.manaraa.com

4

Table 1-4. Example of Columnar Transposition Cipher

Plaintext SEC U REI N FOR MAT ION

Ciphertext S E ROE I M N C N AUF T R 0 I

Chapter 1

S E C U R
E I N F 0

R M A T I
o N

Some transposition ciphers also use key words. The number of letters in
the keyword determines the number of columns, while the alphabetical
priority of the letters is used to determine the order in which the columns are
written to form the ciphertext, as shown in Table 1-5.

Table 1-5. Example of a Transposition Cipher Using a Keyword

Plaintext SEC U R E I N FOR M A T ION

Keyword s E CR E T
Alphabetical Priority 5 2 1 4 3 6

S E C U R E
I N F 0 R M
A T I o N

Ciphertext C F I E N T R R N U 0 0 S I A E M

Mechanical Encryption Devices
Cryptanalysis of classical ciphers, such as the substitution and

transposition ciphers, is made possible because of redundancy in the
linguistic structure of natural languages [7]. Consequently more
sophisticated systems were developed and mechanical encryption devices
were invented in the 1920s to facilitate the use of these cryptosystems [5].
Rotor machines, which resembled typewriters, provided arbitrary
permutations of the alphabet. These consisted of a number of rotors, with
each rotor having 26 positions. The rotor rotated each time a letter was
entered into the machine. This altered the substitution pattern, making the
rotor machine equivalent to a polyalphabetic cipher. However, the machine
used multiple rotors, with the output position of one connected to the input
position of another, thus, providing far greater complexity. For example, in a
3-rotor machine, the first rotor might substitute an A with E, the second rotor
might substitute an E with P and the third rotor might substitute a P with K.
Therefore the initial plaintext letter, A would be represented as a K in the
ciphertext. The German Enigma and the Japanese Purple machines, used
during World War II, are the most famous rotor machines.

www.manaraa.com

Background Theory 5

1.2.2. Modern Encryption

Modem encryption techniques are based on sophisticated and complex
mathematics. Whereas classical ciphers depended on the security of the
entire encryption process, in more modem cryptosystems, the encryption
algorithm can be revealed without compromising security. In these ciphers a
key is used along with the algorithm and thus, the security of the system
relies entirely on the secrecy of this key. The number of possible keys is so
large that it proves infeasible for an attacker to attempt to uncover the
individual key that corresponds to a message. The complex mathematics
used in the algorithms makes it difficult to determine the key from the
publicly available information. Modem cryptographic algorithms include
public and private key cryptosystems, hash algorithms and digital signatures.

Public Key Algorithms
In a public key or asymmetric cryptosystem, one key, known as the public

key, is used to encrypt the message and a second key, known as the private
key is used to decrypt it, as illustrated in Figure 1-1. In 1976, Diffie and
Hellman were the first to propose a public key cryptosystem [8]. In order to
communicate securely, the sender and recipient of a message must both have
two keys - a public and a private key. Their public keys are made generally
available, while the private keys are kept secret and are only known by the
individual owner. To transfer a message, the sender encrypts it using the
recipient's public key. The resulting ciphertext can then be sent along an
unsecured channel. The receiver decrypts the ciphertext using the private
key.

I Plaintext ~~ _~~ulnsecured channr,...e,_-+ ~
Public Key '-__l

Private Key

Figure 1-1. Public Key Cryptosystem

It is computationally infeasible to determine the decryption key from the
publicly available cryptographic algorithm and encryption key [9]. Public
key algorithms are typically based on mathematical problems such as the
difficulty in factoring large prime numbers or in computing discrete
logarithms in a finite field.

One of the most commonly used public key algorithms is RSA, which is
named after its designers Ronald Rivest, Adi Shamir and Leonard Adleman.
It is based on the non-deterministic polynomial-time (NP) problem, the
prime factorisation of a large number. NP problems require a long period of

www.manaraa.com

6 Chapter 1

time to be solved, even though a proposed solution can be easily verified. As
the problem increases, the number of computational steps needed to find a
solution increases exponentially, while the number of steps required to check
a possible solution increases only in proportion to a polynomial function.
Other public key cryptosystems include the Diffie-Hellman algorithm,
EIGamal and McEliece.

Private Key Algorithms
In a private key or symmetric algorithm, the same key is used to encrypt

and decrypt a message. An outline of a private key cryptosystem is given in
Figure 1-2. Since only one key is used, the security of the system relies
entirely on the secrecy of the key. The key must be transferred from the
sender to the receiver of a message via a known secure channel.

1 Plaintext

Encrypt Unsecured Channel Decrypt

~~ .1 Ciphertext I .~
L_ro~_~
Figure 1-2. Private Key Cryptosystem

There are two classes of symmetric key algorithms, stream ciphers and
block ciphers. Stream ciphers encrypt single bits of plaintext, while block
ciphers operate on a fixed size data block. A famous example of a stream
cipher is the one-time pad, which was designed by Gilbert Vernam in 1917
[10], and hence, it is also known as the Vernam cipher. The one-time pad
uses a string of completely random bits, called the keystream. The keystream
must be the same length as the message and is bitwise XORed with the
plaintext to produce the ciphertext. In terms of alphabetical letters,
encryption is the addition modulo 26 of a plaintext character with the
corresponding keystream character [5]. Since each keystream is truly
random and used only once, the one-time pad is a perfectly secure
encryption system. The main disadvantage to using the cipher is that truly
random keys of the same length as the message must be generated and
securely transmitted to the recipient. There are very few situations where this
is practical [11]. An example of the Vernam cipher is depicted in Table 1-6.

Table 1-6. Example ofthe Vernam One-Time Pad

Plaintext
Keystream
Ciphertext

PER F E C T C I P HER
LQTALMCIUPFHZ
B V L G Q P W L D F N M R

www.manaraa.com

Background Theory 7

Block ciphers are the most common form of private key cryptosystems.
Perhaps the most famous of all encryption algorithms is the DES block
cipher, which is discussed in chapter 2. Typically, block ciphers have a
feistel structure, which was designed by Horst Feistel in the 1970s [12]. A
feistel cipher involves multiple iterations of a simple non-linear function.
One half of the plaintext is operated on by the function, the result of which is
XORed to the other half. The two halves are then swapped prior to the next
iteration. Examples of feistel algorithms include, DES, LOKI, MARS,
Serpent and Twofish. Other well-known block ciphers are IDEA, RC6 and
the recently developed Rijndael algorithm, which is studied in chapters 3 and
4.

Hash Functions
A hash function transforms a variable-length message into a much shorter

fixed-length output. Hash algorithms are used to ensure the integrity of a
message. A simple example is to XOR each byte of input data to produce a
one-byte hash result. However, in order for a hash algorithm to be
cryptographically useful, it must be a one-way hash function [6]. A one-way
function is a function that is relatively easy to compute but computationally
infeasible to reverse.

A message authentication code (MAC) is a hash function, which utilises a
key. The sender generates a hash of the message using a secret key and sends
this hash value along with the encrypted message. Similar to private key
algorithms, it is necessary to send the key via a known secure channel. The
receiver decrypts the ciphertext and using the same secret hash key can
create a hash of the received message. If the hash values correspond then the
receiver is assured that the message has not been interfered with during
transit and that its sender is authentic. Thus, when a hash function is utilised
as a MAC, it provides authentication in addition to ensuring message
integrity. Private key algorithms such as DES and Rijndael can be used to
generate MACs. Other examples of hash functions include RIPEMD-160,
MD5 and the Secure Hash Algorithm (SHA), which is discussed further in
chapter 5.

Digital Signatures
Digital signature algorithms are utilised to sign and authenticate

documents. A digital signature provides the same effect as a real signature in
that it verifies that a message originates from a specific person. It consists of
two components, a signing algorithm and a verifying algorithm. The sender
encrypts a message with the recipient's public key and using a signing
algorithm, encrypts the signature with his own private key. On receiving the
encrypted message, the recipient can authenticate the message by decrypting

www.manaraa.com

8 Chapter 1

the signature with a verifying algorithm and the sender's public key. He can
then decrypt the ciphertext with his own private key.

Many public key ciphers are used for digital signatures such as RSA and
ElGamal. However, in 1991, the NIST proposed the Digital Signature
Standard (DSS), which comprises the SHA hash function and a Digital
Signature Algorithm (DSA). The DSA algorithm cannot be used to encrypt
or decrypt data and is solely used to create signatures [13]. The algorithm is
based on the difficulty of computing discrete logarithms and is an adaptation
of the EIGamal public key algorithm. The SHA hash algorithm is utilised to
create a hash of the message. The resulting hash is input into the signature
algorithm to produce the signature.

Advantages and Disadvantages of Public and Private Key Algorithms
The most common modem encryption techniques are public and private

key cryptosystems. Private key algorithms are used for bulk data encryption
and are at least 1000 times faster than public key cryptosystems [5].
However, private key algorithms require the secure generation and
distribution of the secret key. Also, it is necessary to change the key
frequently to avoid the risk of it being compromised. Conversely, public key
algorithms are generally used in key distribution and not in the encryption of
messages since they are limited by computational cost and thus, are slow in
speed. A primary advantage of public key ciphers is their use in digital
signatures.

Many applications, however, exploit the advantages of both public and
private· key algorithms. The private key algorithm is used to encrypt the
message with a symmetric key. This symmetric key is then encrypted using
a public key cipher and the recipient's public key. The encrypted message
and encrypted key are then sent along an unsecured channel to the receiver
of the message. The recipient decrypts the encrypted key using a private key
and can then decrypt the message using the decrypted symmetric key to
obtain the original message.

1.3. Cryptanalysis

Cryptanalysis can be described as the art of breaking cryptosystems. To
break a cipher involves finding a weakness in the cipher that can be
exploited with a complexity less than a brute-force attack [14]. A brute-force
attack simply involves trying all possible keys in a sequence. Whether this is
feasible or not depends on the size of the key. A fundamental assumption of
cryptanalysis is Kerkhoff's principle, which states that the security of a
cryptosystem must not depend on keeping the cryptographic algorithm

www.manaraa.com

Background Theory 9

secret, but only on keeping secret the key [4]. Successful cryptanalysis
involves a combination of mathematics, inquisitiveness, intuition,
persistence and powerful computing resources.

The two main classes of attacks are passive and active attacks. A passive
attack is where communication is monitored and thus, the confidentiality of
information is threatened. An active attack, on the other hand, is where the
attacker attempts to modify the information and so the confidentiality,
integrity and authenticity of a message are compromised. The objective in all
these attacks is to determine the key [10].

The most common passive attacks include:
Ciphertext-Only

An attacker has access to a block of ciphertext only.

Known-Plaintext
An attacker has access to both a block of plaintext and the
corresponding ciphertext.

Chosen-Plaintext
An attacker has gained access to the encryption process of a
cryptosystem and therefore, has the ability to input plaintext and
construct the corresponding ciphertext.

Chosen-Ciphertext
This is the reverse of a chosen plaintext attack. The attacker has access
to the decryption process of a cryptosystem and is able to input
ciphertext and reconstruct the original plaintext.

Three well-known active attacks are:
Man-in-the-Middle (MITM)

This is where an attacker intercepts a communication channel between
two parties. The attacker can then retrieve information and send on
altered messages without the knowledge of either party. Keys are
easily compromised in a MITM attack. Typically, hash functions are
used to thwart such attacks.

Timing
Cryptographic algorithms vary in the time it takes to process different
data and key inputs. By carefully measuring the amount of time
required to perform certain operations, information can be retrieved
and indeed, secret keys can even be uncovered [15].

www.manaraa.com

10 Chapter 1

Power Analysis
This is a recently discovered technique that involves interpreting
power consumption measurements of various cryptographic operations
to retrieve information [16]. Features such as DES permutation and
shift operations can be easily differentiated, as their power
consumption is visibly different. Differential Power Analysis (DPA) is
an even more powerful method of attack, in which statistical analysis
and error correction techniques are also used to deduce information.

The science of cryptology is continually driven forward by the constant
battle between cryptographers trying to secure information and cryptanalysts
attempting to break cryptosystems.

1.4. Hardware-Based Cryptographic Implementation

1.4.1. Encryption Design Architectures

A number of different architectures can be considered when designing
encryption algorithms [17]. These are described as follows:

Iterative Looping (IL)
Only one round is designed, hence for an n-round algorithm, n
iterations of that round are carried out to perform an encryption

Loop Unrolling (LU)
Involves the unrolling of multiple rounds

Pipelining (P)
Achieved by replicating a round function and placing registers between
each round to control the flow of data

Sub-Pipelining (SP)
The addition of further registers into a pipelined design when a round
function of the pipelined architecture is complex. It decreases the
pipeline's delay between stages but increases the number of clock
cycles required to perform an encryption

A pipe lined architecture will provide the highest overall throughput. Thus,
if a high-speed design is required, a fully pipe lined architecture should be
utilised. Further improvements in speed can be achieved by sub-pipelining
the design. However, this incurs additional delays in the output data. If, on

www.manaraa.com

Background Theory 11

the other hand, area is a consideration, an iterative architecture will produce
the most compact design. For specific speed and area requirements, hybrid
architectures can be employed.

1.4.2. Advantages of Hardware-Based Implementation

Traditionally, Digital Signal Processing (DSP) algorithms have been
implemented in software on enhanced and specifically designed
microprocessors. Although this is a low cost solution, particularly for high
product volumes, the performance often fails to meet the requirements of
many applications. Alternative solutions, which are currently being utilised,
include implementation on arrays of microprocessors, fixed function
processors and custom hardware solutions such as Application Specific
Integrated Circuits (ASICs). In the past decade, however, there has been a
major increase in the use of Programmable Logic Devices (PLDs), such as
Field-Programmable Gate Arrays (FPGAs) and Complex Programmable
Logic Devices (CPLDs), for the implementation of high-level DSP functions
[18]. In particular, FPGAs offer many advantages over both ASIC and
software solutions.

Hardware-based implementations are inherently faster than software
implementations. However, like microprocessors, FPGAs offer in-circuit
reprogrammability. In addition, they can also support high levels of
parallelism, which maximises throughput and allows for the design of fully
pipelined and functionally tailored architectures. Since FPGAs have a
register-rich architecture, pipelining requires no additional resources [19].
Hardware designs of encryption algorithms prove much faster than
equivalent software architectures (typically several orders of magnitude) and
since there is an increasing need to perform encryption on data in real time,
this is very important. Increased bandwidth requirements are a major factor
pushing encryption out of software, since software cannot process encrypted
data at gigabit speeds [20]. One possible solution is to install more servers.
However, this is far more expensive than utilising dedicated hardware
cryptographic systems. Encryption is a computationally intensive process
that comprises the complex manipulation of data and general-purpose
microprocessors cannot perform such operations efficiently. Also, hardware
cryptographic systems are physically more secure than software systems. In
software-based cryptosystems the algorithm keys are stored in the
unprotected memory of a processor. If a symmetric key is compromised, the
encrypted data is no longer secure and can be easily read. If an asymmetric
private key is accessed, it can be used to intercept and modify messages and
to generate false digital signatures, which would be attributed to the key's
rightful owner. In hardware-based encryption the keys can be stored in

www.manaraa.com

12 Chapter 1

tamper-resistant devices such as smart cards, thus, ensuring their integrity
and authenticity [21].

Although slower than ASIC devices, FPGAs share the cost advantages of
high production volumes and none of the Non-Recurrent Engineering (NRE)
costs or fabrication delays associated with ASIC development. Also, when
using FPGAs, the long ASIC design cycle is almost eliminated since there
are no delays for prototype development and design revisions are easily
implemented. In the past, the low gate densities and high costs per unit of
FPGA devices relegated them to small, low-volume designs. However,
within the last number of years, the increase in performance and density of
FPGAs and features, such as embedded microprocessor and memory cores,
have led to these devices becoming viable and highly attractive alternatives
to ASICs in many applications. Ten years ago, the size of an average ASIC
device was 10,000 gates, while the largest FPGA had one tenth of that
capacity. Today, the average ASIC contains 250,000 gates and the largest
FPGA comprises double that capacity [22]. In cryptographic applications,
FPGAs provide considerable flexibility over ASIC devices particularly for
private key encryption algorithms, which seem to fit extremely well with the
characteristics of an FPGA [23]. It is possible to reconfigure an FPGA to
switch between cryptographic algorithms and indeed between encryption
and decryption modes.

1.4.3. FPGA Structure

In this research, the new generic cryptographic architectures described
have been implemented on Xilinx Virtex, Virtex-E or Virtex-II FPGA
technology [24] for demonstration purposes. However, as will be discussed,
these architectures and designs are easily migratable to other silicon
technologies such as ASICs and CPtDs.

Xilinx Virtex FPGAs are high-density devices and comprise between
50,000 to 1 million system gates depending on the particular device used.
They have been developed using a 0.221lm 5-layer metal CMOS process. A
Virtex device is made up of an array of Configurable Logic Blocks (CLBs),
which are surrounded by Input/Output Blocks (lOBs) and interconnected by
versatile routing resources, as illustrated in Figure 1-3. [24]. A CLB
comprises two slices, each containing two Look-Up Tables (LUTs) and two
flip-flops. A LUT can be configured as a 16 x I-bit Random Access Memory
(RAM) or combined with LUTs in other slices to created larger RAMs. An
lOB has three storage elements that have independent clock enable signals.
A Virtex FPGA also contains two columns of large embedded memory
blocks, known as Block RAM (BRAM). The two columns are located on the

www.manaraa.com

Background Theory 13

vertical edges of a device. A BRAM is a synchronous 4096-bit memory
block, which can be configured to support varying address and data widths.

DLL lOBs DLL

VeniaRing· .

.. ::E ::E ..
III

~ CLBs ~
III

Q Q
III III

.

YersaRing

DLL lOBs DLL

Figure /-3. Virtex Architecture Overview

The Xilinx Virtex-E family of FPGAs consists of fast, high-density
devices with 58,000 to 4 million system gates. They are designed for low
power operation and have been fabricated using a 0.18 /lm 6-layer metal
CMOS process. Similar to Virtex FPGAs, Virtex-E devices comprise CLBs,
lOBs and BRAMs. However, the BRAMs are arranged in multiple columns
throughout the device. The Virtex-E Extended Memory (EM) family of
FPGAs are an extension of the Virtex-E family, and comprise additional
BRAM. The XCV812E extended memory device contains the highest
number of memory blocks with 280 BRAMs.

Virtex-II FPGAs range from 40,000 to 10 million system gates in density.
They have been developed using a 0.15/lm 8-layer metal CMOS process.
The architecture is optimised for high-speed and low power consumption. It
includes CLBs, lOBs and 2 to 6 columns of BRAMs. A CLB in a Virtex-II
device contains four slices. Each BRAM is a synchronous 18 Kbit memory
block that can be configured to form single or dual port RAMs of various
depths and widths. Virtex-II devices also contain 18-bit x 18-bit multipliers,
which are located in columns adjacent to each BRAM column.

www.manaraa.com

14 Chapter 1

1.5. AES Development Effort

1.5.1. DES Algorithm Downfall

m January 1997, the RSA Data Security company issued a challenge to
break the US government's DES algorithm. m June of that year, the
challenge was solved by the DESCHALL team who successfully recovered
the 56-bit DES key. The DESCHALL team, led by Rocke Verser, Matt
Curtin and Justin Dolske, adopted a brute-force attack in their attempt to
uncover the 56-bit DES key. DES has 256 or approximately 1017 possible
keys. A computation with such a magnitude of operations was unlikely for
most computer users in the mid-1970s. However, today, massively parallel
machines can threaten the security of DES using a brute-force attack.
DESCHALL entailed a large-scale distributed computing project on the
mternet [25]. The project linked together thousands of volunteers, each
checking different keys. By writing programs for Unix, Macintosh,
Windows and OS/2 operating systems, the DESCHALL team utilised the
computing power of large workstations as well as personal home computers.
m the end, the key was discovered after only searching 24.6% of all possible
keys [26]. Recently, several brute-force recoveries of 56-bit DES keys have
been demonstrated. m 1999, the Electronic Frontier Foundation (EFF) built a
key search machine, which can find a DES key in less than 23 hours [27].

1.5.2. AES Development

m 1997, the National mstitute of Standards and Technology (NIST)
requested candidates for a new Advanced Encryption Standard (AES)
algorithm to replace DES, realising that the algorithm's 56-bit key was no
longer sufficient to provide the necessary security in many applications. As
an interim measure they adopted and standardised Triple-DES, which uses
three passes of the DES algorithm and a 112 or 168-bit key. The NIST
required an algorithm, which would provide good security for the
foreseeable future, be efficient and suitable for various platforms and
environments, and provide flexibility to accommodate future requirements
[28].

m August 1998, at the first AES conference, the NIST began round 1 of
technical analysis for the AES development effort by announcing 15
candidate algorithms. The second AES conference was held in March 1999.
At this conference the technical analysis was presented and discussed, along
with views as to which candidates should be selected as finalists for round 2.

www.manaraa.com

Background Theory

The following five AES finalists were announced in August 1999:
- MARS: developed by the IDM Corporation, America

RC6 : developed by RSA Laboratories, America
- Rijndael: developed by Joan Daemen and Vincent Rijmen of the

Katholieke University Leuven, Belgium
- Serpent: developed by Ross Anderson, Eli Biham and Lars Knudsen

15

of the United Kingdom, Israel and Norway respectively
Twofish: developed by Bruce Schneier, John Kelsey, Doug Whiting,

David Wagner, Chris Hall and Niels Ferguson of Couterpane
Systems, America

1.5.3. Comparison of the AES Finalists

NIST specified that proposed AES algorithms must implement a
symmetric block cipher capable of supporting a data block size of 128-bits
and keys of 128, 192 and 256-bits in length. They wanted an algorithm with
security at least as effective as Triple-DES, but with significantly improved
efficiency.

Structure
A number of different algorithm structures exist [29]:
A product cipher combines two or more encryption operations whose

combination is more secure than the individual components. Typical
operations include transpositions, substitutions, linear transformations, XOR
and other arithmetic functions.

A substitution-permutation (SP) network is a product cipher which
comprises alternating stages of substitutions and permutations.

An iterated cipher is one which involves an encryption process that has
several iterations or rounds. In each round the same transformation or round
function is applied to the data utilising a sub-key, which is derived from the
cipher key.

Afeistel cipher, as described earlier, is an iterated algorithm that maps a
2t-bit plaintext, (Lo,Ro), for t-bit blocks Lo and Ro, to a ciphertext (Rr,Lr),
through an r-round process where r:?: 1.

• Twofish

The Twofish algorithm has a feistel network structure and contains
16 rounds.

• Rijndael, Serpent

Rijndael and Serpent are both substitution-permutation (SP)
algorithms. Rijndael utilises 10, 12 and 14 rounds for 128-bit, 192-bit

www.manaraa.com

16 Chapter 1

and 256-bit keys respectively. The Serpent algorithm consists of 32
rounds.

• MARS,RC6

Both the MARS and RC6 algorithms have modified feistel structures.
MARS consists of 32 rounds. The initial eight rounds are unkeyed,
the next sixteen are keyed rounds and the final eight are unkeyed
rounds. The RC6 algorithm contains 20 rounds. The key schedule of
the RC6 algorithm is identical to that of the RC5 algorithm.

Advantages and Disadvantages
Numerous studies on each of the five AES finalists were presented at the

third AES conference (AES3) held in April 2000 [30]. From these studies a
summary of the advantages and disadvantages of each algorithm was
compiled as follows:

Twofish Algorithm
Advantages:

High security margin - reasonable complexity
- Twofish round function has proven to be the strongest round

function of any of the finalists
- Suitable for restricted-space environments
- Compact hardware implementations are possible
- Supports arbitrary key sizes up to 256-bits

Disadvantages:
- Difficult to defend against timing and power attacks
- Average performance when implemented in software
- Key dependent S-Boxes

MARS Algorithm
Advantages:
- Has one of the highest security margins, both in terms of number of

rounds and in terms of diversity
- Can support key sizes from 128 bits to 448 bits

Disadvantages:
- Difficult to implement in memory constrained environments

Complex
- Average encryption/decryption performance when implemented in

software
Difficult to defend against power and timing attacks

- In hardware implementations, MARS has above average area
requirements and below average throughput

- Not suited to key-agile systems (e.g. IPSec)

www.manaraa.com

Background Theory

RC6 Algorithm
Advantages:

Simple, elegant round function
One of the fastest algorithms when implemented in C-language in
the majority of software studies carried out on 32-bit platforms

17

- RCS has been in existence for almost six years - the key schedule of
the RC6 algorithm is identical to that of the RCS algorithm - existing
analysis on RC6 is not only by far the most extensive of any of the
finalists, it is also the most accurate and the most detailed
Suitable for restricted-space environments

- Can be implemented compactly in hardware
- Can support variable key, block and round sizes

Disadvantages:
- Round function possibly too simple - does not use S-Boxes
- Only has an adequate security margin - algorithms are required to

last at least 20 years
Difficult to defend against power and timing attacks

Rijndael Algorithm
Advantages:

In hardware implementations, offers the highest throughput for
feedback modes and the second highest for non-feedback modes of
operation
Performs well in software implementations - the key setup time is
the fastest of all the finalists
Easy to defend against power and timing attacks

- Very well suited for memory constrained environments
It is easily implemented on a wide range of platforms
Supports I28-bit, I 92-bit and 2S6-bit key and data block lengths

Disadvantages:
- Adequate security margin

Serpent Algorithm
Advantages:

- Simple structure
Very high security margins in terms of number of rounds - very
strong mixing - most secure of all the algorithms
Fastest of the AES finalists when implemented in hardware for non
feedback modes and second highest in feedback modes of operation
Relatively easy to defend against power and timing attacks
Suitable for memory constrained environments
Can support key sizes up to 2S6-bits

www.manaraa.com

18 Chapter 1

Disadvantages:
- Generally the slowest of the finalists when implemented in software

Hardware Implementation Performance Evaluation
In particular, studies were carried out on the hardware implementation of

the five finalist algorithms. These were also presented at the third and final
AES conference. A summary of the principal hardware-based studies is
provided below.

Implementations on FPGA Devices
Dandalis, Prasanna and Rolim [23] carried out implementations of the

five finalists on the Xilinx Virtex family of FPGAs. Iterative designs of each
algorithm are implemented with only feedback modes of operation being
considered. Table 1-7 summarises the results obtained showing the
throughput achieved and the area utilised by each algorithm.

The Rijndael algorithm has the highest encryption rate and also achieves a
very efficient hardware design. Serpent achieves the most compact
implementation with the lowest area utilisation.

Table 1-7. FPGA Implementation Results Obtained by Dandalis, Prasanna and Rolim [23]

Algorithm Archit. Throughput Area Throughput/Area
(Mbits/sec) (CLB slices) (Mbps/slices)

RC6 IT 112.9 2650 0.04
Rijndael IT 353 5673 0.06
Serpent IT 149 2550 0.06
Twofish IT 173 9363 0.02
MARS IT 203.8 6896 0.03

Elbirt, Yip, Chetwynd and Paar [17] carried out their study on four of the
five finalists. A summary of the results obtained is outlined in Table 1-8.

The MARS algorithm was excluded from the study on the basis that it
would achieve a poor performance when compared to the other finalists due
to its use of large S-Boxes and modulo 232 multiplications. A number of
different architectures were considered when designing the algorithms such
as loop unrolling (LV), partial pipelining (PP) and sub-pipelining (SP).
However, only the encryption function of each algorithm was implemented
and the algorithms were compared with respect to throughput optimisation.
The algorithms were implemented on XCVlOOO Xilinx Virtex FPGAs.

Serpent outperforms the other finalists both in terms of throughput
achieved and area utilised. It is evident that Serpent is well suited for an
FPGA implementation from a performance perspective. All four algorithms

www.manaraa.com

Background Theory 19

achieve Gigabit encryption rates, which is at least one order of magnitude
faster than the best reported software realisations.

Table 1-8. FPGA Implementation Results Obtained by Elbirt, Yip, Chetwynd and Paar [17]

Algorithm Archit. Throughput Area Throughput/
(Mbits/sec) (CLB Area

slices) (Mbps/slices)

RC6: Feedback pp 126.5 3189 0.04
Non-feedback SP 2398 10856 0.22

Rijndae1: Feedback LV 300 5302 0.06
Non-feedback SP 1938 10992 0.18

Serpent: Feedback LV 444 7964 0.06
Non-feedback PP 4860 9004 0.54

Twofish: Feedback SP 120 3053 0.04
Non-feedback SP 1585 9345 0.17

Gaj and Chodowiec [31] carried out FPGA implementations on each of
the five algorithms using Xilinx Virtex XCV1000 FPGA devices. Iterative
designs were implemented and therefore, only feedback modes were
considered. The algorithm key schedules were not included in
implementation. Table 1-9 outlines the results obtained.

Table 1-9. FPGA Implementation Results Obtained by Gaj and Chodowiec [31]

Algorithm Archit. Throughput Area Throughput/Area
(Mbits/sec) (CLB slices) (Mbps/slices)

RC6 IT 103.9 1139 0.09
Rijndael IT 331.5 2902 0.11
Serpent IT 339.4 4438 0.08
Twofish IT 177.3 1076 0.16
MARS IT 39.8 2737 0.01

They classify the five algorithms depending on their performance
characteristics. The first class includes Twofish and RC6, both of which are
compact low-cost implementations with medium speed compared to other
candidates. They are the only two algorithms of the five that can be
implemented using low cost FPGA Xilinx XC4000 devices. The second
class includes Serpent and Rijndael. Both guarantee very high speeds at the
cost of the relatively large area. The third class contains MARS. It shows the
worst hardware characteristics of the five candidates. It is the slowest

www.manaraa.com

20 Chapter 1

algorithm, eight times slower than the fastest Serpent algorithm. It also
utilises over twice the area used by the ciphers in the first group.

Implementations on ASIC Devices
ASIC implementations of the five AES finalists using a 0.5flm standard

cell library were considered by Weeks, Bean, Rozylowicz and Ficke [32]. In
this study each· algorithm was implemented using both an iterative
architecture and a pipelined architecture. The results obtained are illustrated
in Table 1-10. The Twofish algorithm provides the smallest area of the
iterative designs with Rijndael achieving the highest throughput. Of the
pipelined architectures the Twofish algorithm has again the smallest area
while Serpent achieves the fastest encryption rate. In both types of hardware
implementation design, the MARS algorithm is the most inefficient.

Table 1-10. ASIC Implementation Results Obtained by Weeks, Bean, Rozylowicz,Ficke [32]

Algorithm Archit. Throughput Area Throughput/
(Mbits/sec) (mm2) Area

(Mbps/mm2)

RC6: Pipelined P 2197 453 4.85
Iterative IT 102.8 19.2 5.35

Rijndael: Pipelined P 5745 420 13.68
Iterative IT 605.8 33.8 17.92

Serpent: Pipe lined P 8030 438.6 18.31
Iterative IT 202.3 23.3 8.68

Twofish: Pipe lined P 2274 225.3 10.1
Iterative IT 105 16 6.56

MARS: Pipelined p 2189 1333 1.64
Iterative IT 56.7 126.8 0.45

Ichikawa, Kasuya and Matsui [33] analysed the AES finalists using
Mitsubishi Electric's CMOS 0.35flm ASIC design library. A summary of the
results obtained is given in Table 1-11. Full loop unrolled designs of each
algorithm were implemented and feedback modes of operation considered.
Rijndael is the fastest algorithm among these implementations and is also the
most efficient in terms of area utilisation. Serpent is the second fastest of the
five algorithms.

In April 2000, at the third AES Candidate Conference, round 2 of the
technical analysis was presented and discussed, along with views as to which
of the finalists should be selected as the AES winner(s). In October 2000, the
Rijndael algorithm was selected by the NIST as the new AES and in
November 2001, it replaced DES as the Federal Information Processing

www.manaraa.com

Background Theory 21

Encryption Standard. The NIST judged Rijndael to be the best overall
algorithm in terms of security, performance, efficiency, flexibility and
implementation characteristics.

Table I-II. ASIC Implementation Results Obtained by Ichikawa, Kasuya and Matsui [33]

Algorithm Archit. Throughput Area Throughput/Area
(Mbits/sec) (gatesxl03) (Mbps/ gatesxl03)

RC6 LU 204 1643 0.12
Rijndael LU 1950 612.8 3.18
Serpent LU 931.6 503.8 1.85
Twofish LU 394 431.9 0.91
MARS LU 225.6 2935.8 0.08

1.6. Rijndael Algorithm Finite Field Mathematics

The following section outlines the finite field mathematics m GF(28)

utilised in the Rijndael algorithm.
The elements of a finite field can be represented in several different ways.

In the Rijndael specification, the classical polynomial representation is used.
A byte, b: b7 b6 b5 b4 b3 b2 bl bo, is considered as a polynomial with
coefficients in the finite field, {O, 1 }. The polynomial is represented as:

(1.1)

For example, the byte, 1000 1011, (Ox8B in hexadecimal) corresponds to
the polynomial,

(1.2)

1.6.1. Addition

Utilising the polynomial representation, the addition of two values is the
sum modulo 2 of the coefficients. In binary notation, this addition is a simple
bitwise XOR.

For example,

(X7+ x3 + x+ 1) + (X7+X6 + x5 + x3 + x2 + x + 1)
= x6 + x5 + x2 (1.3)

www.manaraa.com

22 Chapter 1

and in binary,

1000 1011 XOR 1110 1111 01100100 (1.4)

1.6.2. Multiplication

Multiplication in GF(28) corresponds to multiplication of polynomials
modulo an irreducible binary polynomial of degree 8. A polynomial is
irreducible if it has no divisors other than itself and 1 [34].

In the Rijndael algorithm, this polynomial is m(x) = OxllB, where

(1.5)

Hence, the result of the multiplication will always be a polynomial of
degree below 8. For example the multiplication of the two hexadecimal
numbers, Ox63 and Ox15, using polynomial representation is,

(1.6)

The result of (x lO + x9 + x8 + Xl + x 6 + X4 + x3 + X + 1) modulo
(x8 + X4 + x3 + X + 1) is Xl + X 4 + x3 + x2 + X or Ox9E, as illustrated in Figure
1-4. (Remember that the polynomial coefficients lie in the finite field, {0,1})

www.manaraa.com

Background Theory

x8 + X4 + X3 + X + 1 I X lO + X9 + X8 + X 7 + X6 + X4 + X3 + X2 + x+ 1

_ (x lO + x6 + x5 + x3 + x2)

x9 + x8 + x7 + x5 + X 4 + X + 1

_ (x9 + X 5 + X 4 + x2 + x)

x8 + X 7 + x2 + 1

_ (x8 + X4 + x3 + X + 1)

Figure 1-4. Modulo Division Example

1.6.3. Multiplicatiou of Constants

23

Multiplication by x can be implemented at byte level as a left shift and a
subsequent conditional bitwise XOR with the hexadecimal value OxlB. This

. can be exploited to accommodate multiplication by any constant. For
example, Ox63 * Ox 15 can be calculated as follows:

• Ox63 * Ox02 = 0110 0011 * 0000 0010

Shift Ox63 left by 1 place = 11000110 = OxC6 (1.7)

• Ox63 * Ox04 = 0110 0011 * 0000 0100

Shift OxC6 left by 1 place = 1 1000 1100 (Result is 9-bits in length)

=> XOR with OxlB 1 1000 1100 EB 0001 1011

= 1001 0111 = Ox97 (1.8)

www.manaraa.com

• Ox63 * Ox08 = 0110 0011 * 0000 1000

Shift Ox97 left by 1 place =1 0010 1110 (Result is 9-bits in length)

=> XOR with OxlB = 1 0010 1110 EB 0001 1011

= 00110101 = Ox35 (1.9)

• Ox63 * OxlO = 0110 0011 * 0001 0000

Shift Ox35 left by 1 place = 0110 1010 = Ox6A (1.10)

Hence,

Ox63 * Ox15 = Ox63 * (OxOI EB Ox04 EB Oxl0)

= Ox63 EB Ox97 EB Ox6A

= 0110 0011 EB 1001 0111 EB 01101010

= 10011110 = Ox9E (1.11)

As is expected, the result obtained in equation (1.11) corresponds to the
result achieved in Figure 1-4.

1.6.4. Multiplication of 1\vo Polynomials

Rijndael uses the concept of 4-byte vectors to correspond with
polynomials of degree 4. The product of two such polynomials,
a(x) = a3x3 + a2x2 + a/x + ao and b(x) = b3X3 + b2x2 + b/x + bo is c(x)
where,

www.manaraa.com

Background Theory

with, Co = ao * bo
C1 = a1* bo EB ao* b1
Cz = az* bo EB a1* b1 EB ao* bz
C3 = a3* bo EB az* b1 EB a1* bz EB ao* b3
C4 = a3* b1 eJ az* bzEB a1* b3
C5 = a3* bz eJ az* b3
C6=a3*b3

25

(1.12)

The result, C(x) , is now reduced modulo a polynomial of degree 4. The
calculations are given in Appendix A.l. In the Rijndael specification this
polynomial is M(x) = X4 + 1. The result is given by,

(1.13)

with, do=coEB C4 ao*boEB a3*b1EB az*bzEB a1*b3
d1=C1EB C5 a1*bo EB ao*b1EB a3*bz EB a2*b3
dz=czEB C6 az*boEB a1*b1EB ao*bzEB a3*b3
d3=C3 = a3*bo eJ az*b1EB a1*bz EB ao*b3

This polynomial multiplication may be represented as,

do ao a3 a2 a l bo
dl a l ao a3 a2 b l

(1.14) = d2 a 2 a l ao a 3 b2

d3 a3 a2 a l ao b3

1.6.5. Multiplicative Inverse in GF(28)

The multiplicative inverse of a polynomial in the finite field, GF(28) is
found by performing the Extended Euclidean Algorithm. An irreducible
polynomial of degree 8, which is defined as, m(x) = x8 + X4 + x3 + X + 1 in
the Rijndael algorithm, is required in the calculation.

Taking a polynomial a(x) , the Extended Euclidean Algorithm is
performed on a(x) andf(x). If a(x) is not zero, the polynomials r(x) and s(x)
will be obtained such that,

www.manaraa.com

26 Chapter 1

r(x)*a(x) + s(x)*f(x) = 1 (1.15)

If this result is reduced modulof(x),

r(x)*a(x) = l(mod(f(x)) (1.16)

and r(x) will be the multiplicative inverse of a(x).

For example, the inverse of the byte 1100 1011 (OxCB) is found as
described in Table 1-12.

The Auxiliary column commences with the values 0 and 1 in rows 1 and
2. Similarly, the Remainder column starts with m(x) and a(x).

Table 1-12. Multiplicative Inverse ofOxCB in GF(28)

Row Remainder
1 m(x) = x8 + X4 + x3 + X + 1
2 a(x) = x 7 + x6 + Xl + X + 1
3)+x1 + x
4 1

Quotient

x + 1
x+l

Auxiliary
o
1

x + 1
x2

To fill the subsequent rows, divide the remainder, m(x) by a(x) and place
the quotient in the Quotient column of row 3 and the remainder in the
Remainder column of row 3. Next multiply the quotient in row 3 by the
auxiliary value in the previous row, row 2 and add the result to the auxiliary
value that appears in the row before that, row 1. Continue this process until
the remainder is reduced to 1. The contents in the corresponding auxiliary
column is the inverse of a(x) (see Appendix A.2 for the full calculation).
Hence, the inverse of a(x) = x7 + x6 + x3 + X + 1 is equal to x2•

1.7. Conclusions

The art of secret writing has been in existence since ancient times and
many wars and battles have been won, not by the soldiers on the battlefield,
but through the breaking of secret enemy codes and ciphers by
mathematicians and scientists. Perhaps the most famous military use of
encryption.was during WWII, when the German Enigma codes were broken
by scientists such as Alan Turing at Bletchley Park, providing the allies with
vital information regarding their war efforts.

In this chapter both classical and modem cryptographic techniques were
discussed. Classical encryption techniques typically involved character
based substitution and transposition ciphers, in which the letters of a

www.manaraa.com

Background Theory 27

message were rearranged and reorganised. More modern encryption systems,
such as public and private key algorithms, hash functions and digital
signatures, employ complex mathematics. Public key algorithms provide
secure key distribution. The most commonly used public key cipher is RSA,
which is based on the computationally infeasible problem of factoring large
prime numbers. Private key algorithms are typically used for bulk data
encryption. The best-known symmetric key cipher is the DES algorithm.

In 1997, DES was broken and in response, the NIST established the AES
development effort to find a suitable algorithm to replace DES as the FIPS
encryption standard. By August 1999, the NIST had chosen five finalists:
MARS, Serpent, RC6, Rijndael and Twofish. In October 2000, after a long
and rigorous evaluation process, Rijndael was chosen as the AES winner.
Although each of the finalists appeared to offer adequate security, Rijndael
was selected as it performed well over a wide range of hardware and
software environments. It was one of the easiest algorithms to defend against
timing and power attacks. It also had low memory requirements, making it
highly suitable for memory-constrained applications. The Rijndael algorithm
comprises substitutions, permutations and complex finite field mathematics.
The finite field addition, multiplication and multiplicative inverse operations
utilised in Rijndael are outlined in the chapter.

Passive and active cryptographic attacks have also been explained. There
is a constant battle between cryptographers and cryptanalysts, without
which, advances in the field of cryptography would never be achieved.

The advantages of hardware-based cryptographic architectures and in
particular, FPGA implementations of encryption algorithms have been
described. Hardware implementations significantly out-perform equivalent
software implementations in terms of speed. They also support pipelined
architectures and provide additional security since it is physically more
difficult to tamper with hardware encryption devices. FPGAs offer many of
the advantages of custom-built ASIC implementations such as higher
throughput and security. Although ASICs provide a faster implementation
and are more efficient to use in high-volume applications, FPGAs have a
much shorter development time, lower NRE costs and support in-circuit
reprogrammability [19]. Since they share many of the advantages provided
by ASICs without the disadvantages, FPGA implementations are becoming a
practical and viable alternative solution.

www.manaraa.com

Chapter 2

DES ALGORITHM ARCHITECTURES AND
IMPLEMENTATIONS

2.1. Introduction

The DES algorithm [35] is the best known and most widely used
encryption algorithm. IDM developed DES in the mid 1970s as a
modification of an earlier system known as Lucifer. In 1976, DES was
adopted by the National Bureau of Standards (NBS), now the NIST, as a
federal standard and authorised for use on all classified government
communications. It has been the standard algorithm for banking and other
applications since 1977. Although the private-key algorithm has recently
been replaced by the Advanced Encryption Standard (AES) algorithm, DES
will still remain in the public domain for a number of years because of
legacy requirements. It provides a basis of comparison for new algorithms
and it is also used in IPSec protocols, ATM cell encryption, the Secure
Socket Layer (SSL) protocol and in Triple-DES, adopted to improve DES in
the X9.17 and ISO 8732 standards [36, 37].

Much design work has been carried out on the DES algorithm. This
design work has concentrated on high throughput designs and small, low
area designs. This chapter describes a new generic parameterisable DES IP
architecture. The use of this approach allows designs to be quickly created
for a wide range of specifications in terms of scalability, modes of operation
and single or Triple-DES functionality. A novel key scheduling design,
which can be utilised in any pipelinable private-key encryption algorithm
implementation, is also presented [38, 39, 40]. The design supports the use
of different keys every clock cycle, thus improving overall security since
users are not restricted to using the same key during anyone session of data
transfer. The DES algorithm, which lends itself readily to pipelining, IS

28

www.manaraa.com

DES Algorithm Architectures and Implementations 29

utilised to exemplify this novel scheduling method. The broader applicability
of the method to other encryption algorithms is also illustrated. Both designs
are implemented on Xilinx Virtex FPGA technology [24].

The chapter begins with a detailed description of the DES algorithm. The
Triple-DES algorithm and DES modes of operation are also discussed.
Previous design work on the DES algorithm is then outlined. The generic,
parameterisable DES design is described and performance results evaluated.
The design and a performance analysis of the novel key scheduling core is
also examined. Finally, in the conclusion, a comparison is presented between
previous work and the designs discussed in the chapter.

2.2. DES Algorithm Description

DES is a private key (symmetric) algorithm. An outline of DES is shown
in Figure 2-1. It is a block cipher operating on 64-bit blocks of plaintext
utilising a 64-bit key. Every 8th bit of the 64-bit key is used for parity
checking and otherwise ignored. After an initial permutation, the 64-bit input
is split into a right half, Ro, and a left half, Lo, each 32 bits in length. DES
has 16 iterations or rounds. In each round a function, f, is performed in
which the data is combined with a 48-bit permutation of the key. After the
16th iteration, the right (RI6) and left (LI6) halves are concatenated and a final
permutation, which is the inverse of the initial permutation, completes the
algorithm.

2.2.1. Function/ofthe DES Algorithm

The function f of the DES algorithm is made up of four operations.
Firstly, the 32-bit right half of the plaintext, Ro, is expanded to 48-bits and
then XORed with a 48-bit sub-key, KI. The result is fed into eight
substitution boxes (S-Boxes), which transform the 48-bit input to a 32-bit
output. Finally, a straight permutation (P-Permutation) is performed, the
output of which is XORed with the initial left half, Lo, to obtain the new
right half, RI . The original right half, Ro, becomes the new left half, LJ• This
is outlined in Figure 2-2.

Expansion and P-Permutation
In the expansion permutation, the right half of the input data is expanded

from 32 to 48 bits. This is achieved by repeating sixteen of the bits and
rearranging their order. For example, bit 1 of the input will form bit 2 and
the final bit of the 48-bit output. The P-Permutation simply involves
rearranging the order of its 32-bit input to achieve a transformed 32-bit
output. Both permutations are outlined in Appendix B.l.

www.manaraa.com

30

K I

R 1

L 1

Key

Key
Schedule

R. - 32·bit right half of plaintext

L. - 32·blt left half of plaintext

K, - 48·blt Key permutations

y - 32-bit alterations of L.

RJ - 32·blt alterations of R.

Plaintext

Ciphertext

Figure 2-1. Outline of DES Encryption Algorithm

[47:0)

[0:31) Expansion ~47~ ~[47:0L S·boxes [O:3~1 P [0:31)

f ~
Permutation ~ ~ Permutation ~

A~

[0:31) l[0:31)

Figure 2-2. Function, f of the DES Algorithm

Chapter 2

RI+1

L 1+1
~

www.manaraa.com

DES Algorithm Architectures and Implementations 31

Substitution Boxes (S-Boxes)
Each S-Box has a 6-bit input and a 4-bit output. Hence the 48 bits are

divided into 6-bit sub-blocks and each of these is operated on by an S-Box.
An S-Box consists of a table of 4 rows and 6 columns, where the entries are
integers in the range 0 to 15 as specified in the standard. The 6-bit input
specifies in which row and column the 4-bit output value can be obtained.
The outputs from each of the 8 S-Boxes are concatenated to obtain a 32-bit
output.

Consider an input: Xl X2 X3 X4 Xs X6

• Xl and X6 combine to give a 2-bit number in the range 0 to 3, which
identifies the appropriate row .

• X2 X3 X4 Xs combine to form a 4-bit number in the range 0 to 15, which
identifies the appropriate column.

For example, if the inputto S-Box 6, outlined in Table 2-1, is 'IlOOll',
then combining Xl and X6 gives '11', i.e. 3; combining X2 X3 X4 Xs gives
'1001', i.e. 9. Therefore the required output is located in row 3, column 9.
From the table this entry is 14 or '1110' when represented in binary, and
thus the 6-bit input is reduced to a 4-bit output. All eight S-Boxes are given
in Appendix B.2.

Table 2-1. DES S-Box 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

2.2.2. Key Scheduling

There are two methods of implementing the DES key procedure. The
initial step in the first method, the shifting method, is to remove the parity
check bits in the 64-bit key. Every 8th bit is used for parity checking, leaving
56-bits. The permutation used to remove the parity bits is provided in
Appendix B.3. A different 48-bit sub-key is now generated for each of the 16
rounds of DES. The sub-keys are determined by first splitting the 56-bits
into two 28-bit lengths of data. Then both halves are shifted left by either
one or two bits depending on the round number, as outlined in Table 2-2.
Finally, 48 of the 56 bits are selected according to the compression
permutation shown in Table 2-3. The sub-key used in each iteration will be
different due to the shifting operation. The second method, the permutation

www.manaraa.com

32 Chapter 2

method, simply involves the implementation of the resulting 48-bit
permutations.

Table 2-2. Number of Bits in Sub-Key to be Shifted each Round

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Shift 2 2 2 2 2 2 2 2 2 2 2 2 1

Table 2-3. Key Compression Permutation

14 17 II 24 1 5 3 28 15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2 41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32

2.2.3. DES Decryption

DES decryption employs the same algorithm as in the encryption process,
but the 48-bit sub-keys created are used in reverse order. The first round
utilises the final key, the second round uses key 15 and so on. The symmetry
of the algorithm is evident in Figure 2-3, which illustrates the encryption and
decryption processes, since,

(2.1)

Also, the final permutation is an inverse of the initial permutation.
Therefore, in decryption its effect is cancelled by the initial permutation.

2.3. DES Modes of Operation

The Federal Information Processing Standards Publications (FIPS PUBS) 81
[41] defines modes of operation for the DES algorithm which may be used in
a wide variety of applications. The four standard modes are the Electronic
Codebook (ECB) mode, the Cipher Block Chaining (CBC) mode, the Cipher
Feedback (CFB) mode and the Output Feedback (OFB) mode.

www.manaraa.com

DES Algorithm Architectures and Implementations 33

ENCRYPTION

K, K"

R.~ R, = L. EIlf(R.,K,) •••• R"~R'. = L .. EIl f1R",K,,)

L.~~L' L"~~L"
DECRYPTION

~ ~

L,. ~ L" = R,. Ell f(L,.,K,.) . . •• L, ~ L. = R, Ell f1L"K,)

R"~~R" R'~~RO
Figure 2-3. DES Encryption and Decryption Processes

2.3.1. Electronic Codebook (ECB) Mode

The ECB mode is the mode in which the DES algorithm is most
commonly utilised. It involves 64-bit blocks of data being encrypted by the
DES algorithm to obtain 64-bit blocks of ciphertext. The ciphertext blocks
are then sent to the recipient of the message where they are decrypted to give
the original data. The ECB mode is illustrated in Figure 2-4. A disadvantage
of DES in ECB mode is that the security of the system relies entirely on the
secrecy of the key. In order to achieve better security, DES can be used in
one of the other three modes.

I Plaintext

Figure 2-4. ECB Mode

2.3.2. Cipher Block Chaining (CBC) Mode

In CBC mode, an initial 64-bit block of data is used, known as an
initialisation vector (IV). Initially, the IV is XORed with the first block of
plaintext, Po, and the result is encrypted to obtain the ciphertext block, Co.
Subsequently, ciphertext blocks, Ci-I. are XORed with plaintext blocks, Pi,
prior to encryption. When decrypting the process is reversed, as shown in
Figure 2-5. The initial vector can be regarded as an extra key, which
guarantees extra security.

www.manaraa.com

34 Chapter 2

... ~ ...

Figure 2-5. CBC Mode

2.3.3. Ciphertext Feedback (CFB) Mode

In CFB mode DES operates as a stream cipher. This mode also requires
an initialisation vector. The IV is encrypted utilising the DES algorithm and
n-bits of the result are XORed with n-bits of the plaintext to produce n-bits
of ciphertext. The n-bit ciphertext is fed back to form part of the input to be
used in the next encryption as shown in Figure 2-6. After the first encryption
the initial input will be shifted left by n-bits and the next input therefore will
consist of a (64 - n)-bit data block concatenated with the n-bits of the
ciphertext. Decryption in CFBmode also uses DES encryption and n-bits of
the result are XORed with n-bits of the ciphertext to produce n-bits of the
original plaintext.

2.3.4. Output Feedback (OFB) Mode

OFB mode also allows DES to operate as a synchronous stream cipher.
This mode is similar in structure to the CFB mode as depicted in Figure 2-7.
The IV is again encrypted utilising the DES algorithm and n-bits of the result
are XORed with n-bits of the plaintext to produce n-bits of ciphertext.
However, n-bits of the result rather than the ciphertext are fed back to form
part of the input to be used in the next encryption. Similarly to CFB mode,
decryption in OFB mode uses DES encryption and n-bits of the result are
XORed with n-bits of the ciphertext to produce n-bits of the original
plaintext.

www.manaraa.com

DES Algorithm Architectures and Implementations 35

Figure 2-6. CFB Mode

ffi===~ __ .. ~ ...

Figure 2-7. OFB Mode

www.manaraa.com

36 Chapter 2

2.3.5. Mode Advantages and Disadvantages

Advantages, disadvantages and a typical application [9] for the ECB,
OFB, CFB and CBC modes of operation are as follows:

ECBMode
Advantages:

More than one message can be encrypted with the same key
Processing is parallelisable

Disadvantages:
Plaintext patterns are not concealed
A ciphertext error affects one full block of plaintext

Typical Application:
Secure transmission of small amounts of data such as an encryption
key

CBCMode
Advantages:

Plaintext patterns are concealed by XORing with previous ciphertext
block
More than one message can be encrypted with the same key

Disadvantages:
A ciphertext error affects one full block of plaintext and the
corresponding bit in corresponding blocks

Typical Application:
General-purpose block oriented transmission
Authentication

CFBMode
Advantages:

Plaintext patterns are concealed
More than one message can be encrypted with the same key,
provided a different initialisation vector is used

Disadvantages:
A ciphertext error affects the corresponding bit of plaintext and the
next full block

Typical Application:
Stream oriented transmission
Authentication

www.manaraa.com

DES Algorithm Architectures and Implementations

OFBMode
Advantages:

Plaintext patterns are concealed

37

More than one message can be encrypted with the same key,
provided a different initialisation vector is used
A ciphertext error affects only the corresponding bit of plaintext

Disadvantages:
Vulnerable to message stream modification attacks since controlled
changes can be made to recovered plaintext

Typical Application:
Stream oriented transmission over noisy channels such as satellite
communication

2.4. Triple-DES

The Triple Data Encryption Algorithm (TDEA) [35] was approved by the
NIST as the symmetric encryption algorithm of choice over DES in October
1999. The deployment ofTDEA, more commonly referred to as Triple-DES,
took place in response to the security problems encountered by DES.

Triple-DES uses three DES encryption/decryption operations on data,
with three different keys. Encrypting data with Triple-DES involves
performing DES encryption using the first key, K(, the result is then
decrypted with the second key, K2 and finally, this result is encrypted using
the third key, K3. Triple-DES encryption and decryption are illustrated in
Figure 2-8.

ENCRYPTION DECRYPTION

Figure 2-8. Triple-DES Encryption and Decryption

www.manaraa.com

38 Chapter 2

The TDEA algorithm standard defines three keying options for the three
keys, Kt, K2 and K3:

Kt, K2 and K3 as independent keys (this is in effect a 168-bit key)
Kl and K2 as independent keys and K3 = Kl
All three keys are the same, Kl = K2 = K3

The most common implementation of Triple-DES employs the second
keying option and is known as encrypt-decrypt-encrypt or EDE2 mode. The
DES modes of operation, ECB, CBC, OFB and CFB, also apply to Triple
DES [42] and simply involve substituting the DES algorithm with the Triple
DES algorithm.

2.5. Review of Previous Work

ASICs offer the highest performance DES hardware implementations but
lack flexibility. The design by Goubert et al. [43] is one of the earliest
references to a custom hardware implementation of DES. The maximum
speed of the chip was 20 Mbits/sec. A later implementation on a gallium
arsenide (GaAs) gate array [44] achieved an encryption rate of 1 Gbit/sec.
The Sandia National Laboratories (SNL) DES implementation is the fastest
known ASIC implementation, capable of running at 9.28 Gbits/sec. The
ASIC was fabricated using 0.6 micron CMOS technology [45].

Leonard and Mangione-Smith [46] published one of the first papers on
FPGA implementations of the DES algorithm in 1997. Their fastest
implementation achieves a data-rate of 26.4 Mbits/sec on a Xilinx XC4000
series device. However, the design does not support decryption and each key
must be pre-computed before it can be used in the device. A single-chip
implementation of DES on a Xilinx XC4000 series device is described by
Wong et al. [47]. Their design achieves an encryption speed of 26.7
Mbits/sec. Kaps and Paar [48] carried out extensive research on high-speed
FPGA architectures for the DES algorithm. In their studies they consider a
pipelined design with a four-stage pipeline. The data-rate achieved is 402.7
Mbits/sec on the XC4028EX device. They also achieved a 99 Mbits/sec
iterative design on a XCV 4008E device. A JBits implementation of DES by
Patterson [49] performs at 10.7 Gbits/sec on a Virtex XCV150 device. JBits
provides a Java-based Application Programming Interface (API) for the run
time creation and modification of the configuration bitstream, which allows
dynamic circuit specialisation based on a specific key and mode. In this
implementation, the key schedule is computed entirely in software and forms
part of the bitstream. Therefore, all key input and subkey generation circuitry
is removed. This design is not a single-chip implementation of the full DES
algorithm since the key schedule is computed in software. Also, it can only
accommodate one key per data transfer session. A free-DES core [50] also

www.manaraa.com

DES Algorithm Architectures and Implementations 39

exists which utilises a 16-stage pipelined DES design implemented on a
Virtex XCV400-6 device. It achieves a throughput of 3.05 Gbits/sec. The
fastest known DES FPGA implementation is by Trimberger, Pang and Singh
[51] and runs at 12 Gbits/sec on an XCV300E FPGA. This design is heavily
pipelined and optimised specifically for the device on which it is
implemented.

Although software implementations can easily convert between
encryption algorithms, they suffer poor data-rates. The highest performance
of a software implementation is by Eli Biham [52]. The implementation
achieves a throughput of 137 Mbits/sec on a 300 MHz Alpha 8400
processor.

Table 2-4. Specifications for Recent DES Implementations

Manufacturer Type of Device Area System Data

Design Used Clock Rate

(MHz) Mhits/sec

Kaps, Paar [48] Iterative XC4008E 524 slices 40.4 99

Kaps, Paar [48] Pipelined (x4) XC4028EX 1482 slices 39.7 403

Biham [52] - Alpha 8400 - 300 137

Sandia Laboratories Pipelined(x 16) CMOS 256,000 145 9280

[45] transistors

Patterson [49] Pipelined(x 16) XCV150 1584 slices 168 10752

Trimberger et al. Pipelined(x 16) XCV300E 72952 187.5 12000

[51] gates

Table 2-4 summarises the performance of the fastest implementations
outlined above and for comparison purposes the specifications for a number
of commercial hardware implementations of the DES algorithm are given in
Table 2-5.

Table 2-5. Specifications for Commercial DES Hardware Implementation

Manufacturer Type of Device CLB System Data Rate

Design Used Slices Clock Mbits/sec

(MHz)

Memec [53] Iterative XCV4013XL 316 43 172

CAST Inc [54] Iterative XCV I 50-6 255 101 404

Free-DES [50] Iterative XCV400 905 32.5 130

Free-DES [50] Pipelined (x16) XCV400 5263 47.7 3052

www.manaraa.com

40 Chapter 2

2.6. Generic Parameterisable DES IP Architecture Design

The DES algorithm is over 20 years old and therefore many designs exist
which have been forged to specific application requirements. The aim of the
research presented in this section is to describe a new generic architecture
and design, which accommodates all application requirements.

The architecture uses generic parameters to allow the following:
- ECB or CBC modes of operation
- Technology-independent, Virtex FPGA or Virtex-II FPGA

implementation of the DES S-Boxes
- Single or Triple-DES functionality
- Two methods of key generation
- A varying number of pipeline stages - 1, 2, 4, 8 or 16

A finite state machine is used to control the overall functionality of the
design. Figure 2-9 illustrates the VHSIC Hardware Description Language
(VHDL) package file containing the generic parameters.

library IEEE;
use IEEE.std_Iogic_1164.all;

package DES_PACK is

.... ML! HOI.) ur CiI.,McI<.XrI\{" KLYS

.... 1 ilJdi(,llt('s jkfHWi:11ion HH.:thud, 0 jndi(;att~, ;)lJi fling HH:t1h~d
constant KEY_TYPE: integer :~ 0;

... E\i,\r;ry USE OF DlSTRiFlLTED 1<.,\\1 PRIMITIVES

.... 1 i.:tlrlbkS u,s:; (lJ'diqributt:d RA.!'vlfor th~~ s··h).\t;~~, {) USI;:) ('dS\~ 'Aa.h;'Il\CJlI

constant USE_SBOX_DRAM : integer :~ I;

... i\l.'\'itJLR OF llLRAl'H)i\S 10 tH:. L\WLLMI.,:\TU)
NY indicate:- numbcl (ifr0tinds lmplt>welH;,;Jt 1,~~,4.g Qr !(; un; nll wliidi
constant NUM_ITERATE: integer:~ 16;

... TARe, I.: r Vl!ZTL\ TLCHNOLU(; Y

.•. !) {(}t' \·i,1,(:.\ > 1 hx \.:in\~:<. U impktn(,Htftf.i(\1/
constant VIRTEX_TYPE : integer :~ 1;

~h F'J,\Bi,F T!{1Pl.E DES i\:fPl.-L\lENT,\TIO'\
<0_ V hI' DL~. [{i)f i riph~ Dl.:S n.:DL? IfHHk}
constant TRIPLE_DES: integer :~ 0;

.... DES MODI., 11· ONE IlUZAlIO" 1'0 I.)L 1\11'1..1.:\1 'N I LU
~ft [1 I·or Fe n, J t<,r ("Be
constant MODE: integer :~ 0;

end DES]ACK;

Figure 2-9. VHDL Package file Containing Generic Parameters

www.manaraa.com

DES Algorithm Architectures and Implementations 41

2.6.1. Pipelining the DES Core

The iterative nature of the DES algorithm makes it ideally suited to
pipelining. DES comprises 16 rounds. Therefore, a high-speed hardware
DES design can be achieved by implementing a 16-stage fully pipe lined
architecture. However, such a design incurs a large area penalty. If low
silicon area is a requirement, it is possible to feed data through just one DES
round in an iterative process, but this design will lead to low data
throughputs. In order to accommodate various area and speed requirements,
the DES architecture described in this section is designed to support 1, 2, 4,
8 or 16 pipeline stages.

In order to accomplish parameterisation of the number of pipeline stages
to be implemented, an initial architecture containing the full 16 stages is
designed. Parameters are then used to select the number of rounds in the
architecture required for synthesis. This design can be coded using the
VHDL generate statement and generic parameters. Separate state machines
were designed for the 2, 4 and 8-stage pipelined designs and a generate
statement was utilised to instantiate the correct state machine. Figure 2-10
outlines the structure of DES with two pipeline stages. Registers are placed
at the left and right outputs of each functionfblock to allow the data to be
sequenced.

2.6.2. Permutations

The initial, final, expansion and straight permutations of the DES
algorithm involve a rearrangement of their input data and thus, are simply
hardwired as no logic is involved in their implementation.

2.6.3. Key Generation

Both key generation methods have been included in the architecture. The
design of the permutation method involves the rearrangement of the input
key data, similar to the other DES algorithm permutations. However, when
utilising this method only one key can be used in anyone data transfer
session.

The shifting method of implementing the DES key schedule involves
carrying out a shift operation during each algorithm iteration. Figure 2-11
outlines the shifting key scheduling method for a fully pipelined architecture.

The 64-bit input key is passed through an initial key permutation, which
removes the parity check bits. The resulting 56-bits enters the first functionf
block. It is split into two 28-bit words and a cyclic shift left operation is
carried out on each half. The two halves are then concatenated and operated

www.manaraa.com

42 Chapter 2

on by a final key permutation to obtain the sub-key required by the function!
block. The output from the shift operation provides the input to the next
function block where once again a cyclic shift left operation is carried out
and a key permutation performed. This process continues for each iteration.
In rounds 1, 2, 9 and 16 of the DES algorithm the halves are shifted one
position to the left and for all other rounds two positions to the left.

Data In

Data Out

Figure 2-10. DES with Two Pipeline Stages

www.manaraa.com

DES Algorithm Architectures and Implementations 43

Function,f 3

[55:0]

r·· .. · .. ·· .. ··· ···· .. ···· .. ····· .. ·········· .. ············ ,
i

R [32:0

!
t .. .

Figure 2-11. Shifting Key Scheduling Method for a Pipelined Architecture

The shifting method when utilised with pipelined designs should use less
on-chip routing resources than the permutation method, and thus should
improve overall throughput. A disadvantage of this method, however, is the
initial latency incurred in the generation of the sub-keys. During encryption
the latency is decreased as final sub-keys need only be generated and
available when the data reaches the final rounds. For decryption the latency
is 16 clock cycles, since the sub-keys are utilised in reverse order and thus,
must be pre-generated. However, the permutation method should produce a
smaller design since no actual logic is involved in its implementation.

2.6.4. Design of DES S-Boxes

Three different options are available for implementation of the DES S
Boxes - technology-independent implementation, specific implementation
for a Virtex FPGA device or specific implementation for a Virtex-II FPGA.
Each S-Box is, in effect, a LUT with a 6-bit input and 4-bit output.
Therefore, for the technology-independent design, these look-up tables are
simply coded using case statements.

Distributed RAM was utilised in the specific implementation of the S-Box
LUTs in the Virtex and Virtex-II devices. A study by Haskins [55] indicates
that using ROM blocks provides the most efficient implementation for the S
Boxes of the DES algorithm. Distributed RAM is located within each CLB
slice on a Virtex or Virtex-II FPGA. Hence, the S-Boxes will be in close
proximity to the remainder of the DES algorithm's implemented
components, thus reducing signal propagation delays. Propagation delays
arise when data has to travel long distances across a chip to dedicated
memory resources, such as the Block RAM. When the write enable of the
distributed RAM is low ('0'), transitions on the write clock are ignored and
data stored in the RAM is not affected. Hence, if the RAM is initialised and

www.manaraa.com

44 Chapter 2

both the input data and write enable pins are held low then the RAM can be
utilised as a ROM or LUT.

The maximum size of distributed RAM available on a Virtex device is a
32 x I-bit RAM. Each S-Box comprises 256 bits of data and therefore eight
32 x I-bit RAM are required in an implementation. Figure 2-12 outlines the
structure of an S-Box when implemented on a Virtex device. 5 bits of the 6-
bit input forms each RAM address (A4 to AO). The final I bit is utilised as
the select signal for each multiplexor.

One advantage of using a Virtex-II over a Virtex FPGA in the
implementation of DES S-Boxes is that in Virtex-II devices, 64 x I-bit RAM
are available. Therefore, only four 64 x I-bit RAM are required in the
implementation of each S-Box, as depicted in Figure 2-13. This will lead to a
more compact design in comparison to a Virtex implementation. For
example, a 16-round DES design wiIi utilise 256 CLBs (2 CLBs per S-Box)
to implement the S-Boxes on a Virtex-II device compared to 512 (4 CLBs
per S-Box) on a Virtex FPGA.

Data In [4:0]
-+---+-----+

Data In

4

Data Out [3:0]

Figure 2-12. Structure of S-Box Implemented on a Virtex Device

www.manaraa.com

DES Algorithm Architectures and Implementations 45

Data In [5:0]
4

Data Out [3:0]

Figure 2-13. Structure of S-Box Implementation on a Virtex-II Device

2.6.5. Triple-DES and DES Mode Options

The generic DES architecture is designed so that the algorithm can be
performed three times in succession, and thus supports the implementation
of Triple-DES. If the generic parameter, TRIPLE-DES is assigned high,
three DES entities are implemented with logic to support a 116-bit key in
accordance with the EDE2 mode. The DES architecture supports a non
feedback (ECB) and a feedback (CBC) mode of operation and can easily be
modified to support other feedback modes. Since CBC mode is a feedback
mode, it can only be performed with the I-stage pipeline design. The ECB is
a non-feedback mode and thus its operation can be pipelined [13]. A fully
pipe lined DES implementation will also operate in counter mode. Counter
mode is a simplification of Output Feedback (OFB) mode and involves
updating the input plaintext block as a counter, /.i+ I = /.i + 1, rather than using
feedback. Hence, the ciphertext block, i is not required in order to encrypt
plaintext block, i+ 1 [29]. Counter mode provides more security than ECB
mode, however, operation of either mode involves trading security for high
throughput.

2.6.6. Performance Evaluation

In order to evaluate the performance of the generic DES architecture, two
characteristics are considered - the area utilised and the throughput achieved
by the designs. Firstly, the performance of the 1, 2, 4, 8 and 16-stage
pipelined designs were investigated. Each of the designs was implemented
using the shifting key scheduling method, on XCV 400-4 Virtex FGP A
devices. The performance results obtained are outlined in Table 2-6.

www.manaraa.com

46 Chapter 2

Table 2-6. Performance Results for Pipelined DES Cores Implemented on Virtex XCV400
Devices

Number of Throughput Number of Throughput % Relative % Relative
Pipeline (Mbits/sec) CLB Slices / CLB Slice Area Speed
Stages (xlOl) Efficiency Efficiency

1 213.4 336 635 \00 5

2 394.5 1215 324.7 27.7 9.3

4 615.6 1967 312.9 17 14.6

8 904.5 3066 395 \0.9 21.4

16 4227 2844 1486 11.8 \00

The 8-stage pipe1ined design is in fact larger in area than the fully
pipelined design. This is because the feedback logic which is required to
control the data flow and the key usage in the 8-stage design is more area
inefficient than the implementation of the eight additional iterations.

To gain an appreciation of the area versus throughput trade-off, the
relative performance of the pipe1ined designs are plotted in Figure 2-14,
where llA is defined as the relative area efficiency and llT is the relative
throughput efficiency such that,

llA = minimum area / actual area (2.2)

and,

llT = actual throughput / maximum throughput (2.3)

The 16-stage fully pipelined architecture is the most efficient of the
pipelined designs. Interestingly, the iterative design is more efficient than the
2, 4 and 8-stage pipe lined designs since it is a much more compact core and
yet achieves a desirable throughput. Indeed, using Figure 2-14, the generic
DES architecture can meet the specification of any application. If the area
and throughput requirements are weighted, the most cost-effective design for
that application can be determined.

To illustrate the effect of utilising the shifting and permutation key
scheduling methodologies with pipelined architectures, the 4 and 16-stage
pipelined designs were implemented using both techniques on Virtex
XCV 400 FPGAs. The throughput and area figures achieved are illustrated in
Table 2-7.

www.manaraa.com

DES Algorithm Architectures and Implementations

100

90

80

70
~ 60 c
.!!!
y 50 IE w

~l
~

2 4 8

No. of Pipeline Stages

__ Area

-+-Throughput

ThroughputlCLB Slice

16

47

Figure 2-14. Area and Throughput Efficiency of Pipe lined DES Cores

Table 2-7. Performance Results of Pipelined DES Cores Utilising Shifting and Permutation
Key Scheduling Techniques

Number Key Throughput Number of Throughput / CLB Slice

of Pipeline Scheduling (Mbits/sec) CLB Slices (xl 03)

Stages Method (Mbits/sec*Slices)

4 Shifting 615.6 1967 313
Permutation 576 1885 305.5

16 Shifting 4227 2844 1486.3
Permutation 3737 2714 1377

As expected, the shifting method yields higher throughputs than the
pennutation method at the expense of area. Overall, the shifting technique
proves to be the more efficient of the two key scheduling systems.
Therefore, if a high-throughput design is required which involves few key
changes, the shifting key generation method should be utilised. However, if
frequent key changes are necessary, the pennutation method should be
employed since no initial latency is incurred when a new key is loaded.

The Triple-DES design perfonns at a clock speed of 48 MHz when
implemented on the XCV 400 Virtex device. It operates at a data-rate of 64
Mbits/sec and utilises 1378 CLB slices. Thus, it is approximately three times
the area of the iterative design.

www.manaraa.com

48 Chapter 2

Table 2-8. Perfonnance Results of DES Cores Implemented on Virtex, Virtex-E and Virtex-U
Devices

Number of Device Throughput Number of Throughput / CLB

Pipeline (Mbits/sec) CLB Slices Slice (xlO3)

Stages (Mbits/sec*Slices)

1 Virtex 213.4 336 635

XCV400-4

Virtex-II 278.3 281 990

XC2V500-4

Virtex-E 273.3 336 813.4

XCV300E-8

16 Virtex 4227 2844 1486.3

XCV400-4

Virtex-II 6314.8 2596 2432.5

XC2V500-4

Virtex-E 7810.6 2713 2879

XCV300E-8

Finally, the iterative and fully pipe lined designs were also implemented
on Virtex-II and Virtex-E FPGA devices. The implementation results
obtained are given in Table 2-8. When the designs are implemented on the
enhanced Virtex-E and Virtex-II FPGA technologies significant
improvements in speed are achieved. The fully pipelined DES core
implemented on the Virtex-E device runs at a clock speed of 122 MHz and
achieves a data throughput of 7.8 Gbits/sec, which is faster than that
obtained on the Virtex-II device. However, a -4 speed grade Virtex-II device
was utilised in comparison with a -8 speed grade Virtex-E FPGA. Therefore,
higher throughputs can be achieved if faster speed grade Virtex-II devices
are used for implementation. The CLBs in Virtex-II FPGAs comprise 64 x 1-
bit distributed RAM and large multiplexors, which aid in creating a more
compact implementation. Thus the Virtex-II implementations produce
smaller overall designs.

2.7. Novel Key Scheduling Method

Two typical DES key generation techniques were incorporated in the
design outlined in §2.6. In this section a novel implementation of the DES
algorithm key schedule is presented which applies specifically to a pipe lined
design. It is an extension to the permutation method, which allows the
loading of a different key every clock cycle. The sub-keys are pre-computed

www.manaraa.com

DES Algorithm Architectures and Implementations 49

and hence, for a 16-stage pipelined DES design, it is necessary to control the
time at which the sub-keys are available to each function f block. This is
accomplished by the addition of a skew that delays the individual sub-keys
by the required amount. An outline of this key scheduling method is
provided in Figure 2-15. The design comprises two components, a sub-key
generation block and a skew core.

2.7.1. Sub-key Generation

The new sub-key generation block developed constructs the key
permutations required for each iteration of the DES algorithm. Each sub-key
permutation has the same 64-bit key input (the initial key input) but a
different 48-bit key output and simply involves a rearrangement of the input
data. For example, the permutation required to create the first subkey during
encryption is outlined in Figure 2-16. From this table it can be seen that bit 2
of the 64-bit input key becomes bit 9 of the 48-bit permutated key, bit 62
becomes bit 46, bit 63 becomes bit 40, and so on.

Function
f
4

:.:""~-'·~~-"·""·-·"11';"1 r--- -........ -.............. --.. -... -.~~ ... -.~,.~- .. -............ -.. --.-..... --.. '--"-''''1

ilK I ; I r-~i[~47~:0~l!------~
! i j

I I K3 : ! r-~.~~----~,,~ ______ ~ I .. 1[47:01:,:
! ; i K. I
.,1 I---t-""-t-------{I/ 14------1. i[47:0Ii eJl-----lR'
~ I :

, .1 ,I
, ! j

I ! i

L .. J L .. " i

Figure 2-15. Outline of Novel Key Scheduling Method

www.manaraa.com

50 Chapter 2

---- -----1 2 3 4 14 15 16 fO 'f .u .0 2 • " 42
'" 1 2 3 4 ... 9 10 11 12

17 18 19 20 ... 30 31 32 • ,. 21 ... 2227 23 " 24" 13 14 15 16
33 34 35 36 ... 46 47 48 22 2 3 54 . .. 33 • 34 03 35 23 2.

25 26 27 28 36
49 50 51 52 62 63 64 " 2f 3 t3 .. " •• 3f ... 37 38 39 40 . .. 45 46 47 48

64·bit Input Key ~ ~48'bitSub'Key

Figure 2-16. Round 1 Encryption Key Permutation

This key scheduling design also supports decryption. When decrypting
data the keys for each round or iteration are used in reverse order. Therefore,
sub-key permutation 1 will be used to create the first sub-key, K" in the
encryption process and the final sub-key, K16, in the decryption process.

2.7.2. Skew Core

The skew core consists of a 'dffarray' sub-component, which generates a
sequence of registers as required. The code for this sub-component is
outlined in Figure 2-17. The Depth parameter is generic and indicates the
desired length ofthe array. If Depth = 0, the process, S1 is used to create one
register. If Depth> 0, for example if Depth = 2 (effectively the Depth
parameter will begin at 0 and count up to 2), the S1 process is used to create
the first register in the array and the S2 process creates the remaining two
registers. The 'skew' component generates an array of registers of varying
lengths. It uses the 'dffarray' sub-component to produce the correct number
of registers required at each round of the DES algorithm. The code for the
'skew' component is shown in Figure 2-18. Since the DES algorithm
consists of 16 rounds, the skew core is set to loop 15 times (for i = ° to 14)
since a register is not required to delay the first sub-key. The value of i
determines the Depth of the array to be generated by the 'dffarray'
component. When i = 0, one register is created. If i = 2 for example, three
registers are created. Hence an array of registers of varying lengths is
generated as illustrated in Figure 2-19.

www.manaraa.com

DES Algorithm Architectures and Implementations

library IEEE;
use IEEE.stdJogic_1164.all;
use IEEE.stdJogic_unsigned.all;
use work.TYPE5.all;

--KEY is of type std""logic"vect.or(O to 4(')
entity dffarray is

generic (Depth : POSITIVE);
port (Keyin: in KEY;

clk : in std_logic;
reset : in std_logic;
D_Key : out KEY);

end dffarray;

architecture synth of dffarray is

component dff1
port (D

elk
reset
Q

end component;

: in stdJogic_vector(0 to 47);
: in stdJogic;
: in stdJogic;
: out std_logic_vector(0 to 47));

type MIDKEY is array (0 to Depth) of KEY;

signal A : MIDKEY;
begin

G1: for i in 0 to Depth generate
begin
51: if i = 0 generate

FF1: dff1
port map(D => Keyin,

end generate 5 1 ;

clk => elk,
reset =>reset,
Q => A(I));

52: if i 1= 0 generate
FF2 : dff1
port map(D => A(I-1),

end generate 52;

end generate G1;

D_Key <= A(Depth);

end synth;

clk => clk,
reset => reset,
Q => A(I));

Figure 2-17. Code for 'Dffarray' Component

2.7.3. Applicability to Private-Key Algorithms

51

The novel key scheduling can be utilised in the implementation of any
pipelinable private-key encryption algorithm. The design is particularly
suited to substitution-permutation (SP) and feistel-structured algorithms. A
feistel cipher utilises multiple iterations of a simple non-linear function as
illustrated in Figure 2-20. DES is an example of a feistel cipher. As
described in § 1.5.3, an SP algorithm is one composed of a number of stages
each involving substitutions and permutations.

www.manaraa.com

52 Chapter 2

library IEEE; begin
use IEEE.std_logic_1164.all;
use IEEE.stdJogic_unsigned.all;
use work.TYPES.all;

G2: for i in 0 to 14 generate

···SKEWBUS is array (0 to 15) of stdJO[Lvoct(O 10 4'1)
entity skew is

port (SkewKeyin

end skew;

clk
reset
SkewD_Key

: in SKEWBUS;
: in std_logic;
: in stdJogic;
: out SKEWBUS);

S 1: dffarray
generic map (Depth
port map (Keyin

end generate G2;

clk
reset
D_Key

=> i)
=> SkewKeyin(i+1),
=> clk,
=> reset,
=> SkewD_Key(i+1));

architecture synth of skew is SkewD_Key(O) <= SkewKeyin(O);

component dffarray

generic (Depth
port (Keyin

clk
reset
D_Key

end component;

POSITIVE:= 15);
in KEY;
in stdJogic;
in std_logic;
out KEY);

end synth;

Figure 2-18. Code for 'Skew' Component

i=O D
i=l -0-0-
i=2 -ou-D
i=3 DDDD

Figure 2-19. Array of Registers of Varying Lengths Generated by Skew Core

L,

.... Round r

L-__ --'R,

Figure 2-20. Fiestel Structure

www.manaraa.com

DES Algorithm Architectures and Implementations 53

In algorithms similar to DES, where it is possible to obtain the sub-keys
by performing permutations and substitutions, the key scheduling core will
support the use of different keys every clock cycle. If it is not possible, the
core may still be utilised provided one key is used per session. The Serpent
algorithm, one of the five AES finalists, uses thirty-three 128-bit sub-keys. If
Serpent's key generation block is designed and implemented, it will prove
costly in terms of both area and speed. However, if one key is utilised
throughout the data transfer session, the sub-keys may be pre-computed and
hence loaded over thirty-three clock cycles prior to the start of the
encryption/decryption process. In a pipelined version of the algorithm, the
sub-keys could then be fed through the skew of registers to arrive at the
required round at the correct time. Thus, utilising the skew design is a much
more feasible method.

2.7.4. Performance Results

The pipelined DES design is a large design as it contains 16 instantiations
of the function/component, hence for implementation purposes, the targeted
FPGA device is the largest in the Virtex family, the XCVlOOO. Similar to the
generic parameterisable DES core, distributed RAM are initialised and used
to implement the S-Boxes. Eight 32 x I-bit RAM blocks are required for
each S-Box. The design is implemented using Xilinx Foundation Series
software on the XCV1000-4BG560 device. Data blocks can be accepted
every clock cycle and after an initial delay of 16 clock cycles the respective
encrypted/decrypted data blocks appear on consecutive clock cycles. The
design also supports a key change at full speed, i.e. a different key can be
used with every block of plaintext.

The DES design incorporating the novel key scheduling method utilises
6446 CLB slices which is 52% of the total number of CLB slices available
on this device. Of lOBs, 188 out of 404 (46%) are used. This design uses a
system clock of 59.5 MHz and the data-rate achieved is 3.8 Gbits/sec [39].
It is possible to further enhance these performance figures by optimisation of
the algorithm specific to the requirements of the FPGA device on which the
design is implemented. However, this would result in the design being less
easy to migrate to other devices and technologies.

2.8. Conclusions

DES has been a FIPS standard since 1977 and although it has recently
been replaced, it will be required to retain compatibility with old products
and it will remain as a benchmark for all new algorithms in the future.

www.manaraa.com

54 Chapter 2

A new generic parameterisable DES IP core architecture is described in
this chapter. This architecture can generate DES designs to suit many
application requirements. It accommodates feedback and non-feedback
modes of operation, single or Triple-DES functionality, and shifting and
permutation key scheduling techniques. It can also be utilised to create
designs of specific speed and area configurations by varying the number of
pipeline stages. For illustrative purposes, the designs that can be generated
from the DES architecture are implemented on Virtex, Virtex-E and Virtex
II devices. However, technology-independent implementation of the DES S
Boxes is supported and therefore, the architecture is readily migratable to
other FPGAlPLD and ASIC technologies.

The shifting method is the more efficient of the two key generation
systems and proves suitable for designs requiring few key changes. Since the
shifting method incurs an initial latency on inputting a new key during
decryption, the permutation method is more appropriate for designs
involving frequent key changes.

The 16-stage pipe lined design is the most efficient of the pipelined
designs. When implemented on a Virtex-E XCV300E device, the fully
pipelirted design achieves a throughput of 7.8 Gbits/sec. If implemented on a
Virtex-II speed grade -8 device orindeed ASIC hardware, even higher data
rates can be achieved. The design is approximately 57 times faster than
equivalent software implementations. It also compares very favourably with
existing hardware FPGA implementations. Faster designs reported in the
literature include that of Trimberger et al. [51], which achieves a throughput
of 12 Gbits/sec and the design by Patterson [49], which operates at 10.7
Gbits/sec. However, in both these designs the key schedule is computed in
software and can only support one key per data transfer session. The
performance of the fully pipe lined generic design is among the fastest
hardware implementations currently available and is one of the fastest
single-chip complete DES algorithm designs reported to date.

The performance of the iterative design is also comparable to similar
previous hardware implementations. It runs at 278 Mbits/sec on a Virtex-II
device and utilises 281 CLB slices. The only known faster iterative
implementation is the core by CAST Inc. [54], which achieves a speed of
404 Mbits/sec.

A new key scheduling method for pipe lined implementations of
symmetric-key encryption algorithms is also presented in this chapter. It is a
simple, easy-to-follow method, which involves the pre-computation and
delayed presentation of the algorithm sub-keys. The DES algorithm is used
to demonstrate the key scheduling technique in operation. The key
scheduling method is generic and parameterisable and hence is migratable to
any algorithm, which can be pipelined in its implementation. One

www.manaraa.com

DES Algorithm Architectures and Implementations 55

conventional method of implementing the DES algorithm key schedule
utilises logic cyclic shift operations at each stage of the 16-stage pipeline to
create the sub-keys. The method of implementing the key schedule presented
in §2.7 is an extension of the conventional permutation method and utilises
permutations to create the sub-keys from the input key. The sub-keys are
delayed by the required amount using the necessary array of registers. Hence
the design allows the loading of a different key every clock cycle.

When implemented on a Virtex XCVI000 FPGA, the design achieves a
throughput of 3.8 Gbits/sec. Similarly to the generic parameterisable DES
designs, if implemented on enhanced Virtex devices or ASIC technology,
higher throughputs can be obtained.

The NIST selected five finalists for the Advanced Encryption Standard in
August 1999: MARS, RC6, Rijndael, Serpent and Twofish. MARS, RC6 and
Twofish are fiestel-based algorithms while Rijndael and Serpent are
substitution-permutation algorithms. The novel key scheduling design
presented can also be utilised in a pipelined implementation of any of these
algorithms.

www.manaraa.com

Chapter 3

RIJNDAEL ARCHITECTURES AND
IMPLEMENTATIONS

3.1. Introduction

On the 2nd October 2000 the US NIST selected the Rijndael algorithm,
developed by Joan Daemen and Vincent Rijmen [56], as the new Advanced
Encryption Standard (AES) algorithm. It proved a fast and efficient
algorithm when implemented in both hardware and software across a range
of platforms. In November 2001, the AES was approved as the Federal
Information Processing Encryption Standard (FIPS 197) and it is to be
employed by government agencies and the private sector to encrypt
sensitive, unclassified information [57]. In the future Rijndael will be the
encryption algorithm used in many applications such as:
- Internet Routers
- Remote Access Servers
- High Speed ATM/Ethernet Switching
- Satellite Communications
- Virtual Private Networks (VPNs)
- SONET
- Mobile phone applications
- Electronic Financial Transactions

This chapter describes high performance single-chip FPGA
implementations of the Rijndael algorithm. To attain high throughputs, the
designs are fully pipelined architectures. A fully pipelined Rijndae1 design
requires considerable memory; hence, its implementation is ideally suited to
the Virtex-E and Virtex-E Extended Memory range of FPGAs [24], which
contain devices with up to 280 RAM Blocks (BRAMs). A novel generic

57

www.manaraa.com

58 Chapter 3

parameterisable encryption-only architecture is described, from which
designs can be generated to support 128-bit, 192-bit and 256-bit keys [58,
59]. The 128-bit key Rijndael encryption design, which achieves a
throughput of 7 Gbits/sec, is one of the first and highest performance single
chip AES implementations reported in the literature [60]. The architecture
also includes an efficient Rijndael key schedule that can be employed in both
iterative and pipe lined implementations [61]. A new Rijndael
encryptor/decryptor architecture is discussed [59, 62]. It is one of the first
fully pipelined Rijndael implementations capable of performing both
encryption and decryption. Typically, pipelined implementations specifically
support either encryption or decryption since to support both will result in a
highly area-inefficient design. However, in the architecture outlined in this
chapter, the similarities between the two operations are cleverly exploited
and a high-throughput encryptor/decryptor design is achieved, while
avoiding excess memory utilisation.

A detailed description of the Rijndael algorithm is provided in this chapter
and a review of Rijndael hardware implementations is outlined. Performance
evaluations for both the variable key AES design and encryption/decryption
architecture are presented and a comparison provided with other Rijndael
hardware implementations.

3.2. Rijndael Algorithm Description

The Rijndael algorithm is a substitution-linear transformation network
[28]. It can operate on 128-bit, I92-bit and 256-bit data and key blocks. The
NIST requested that the AES must implement a symmetric block cipher with
a block size of 128 bits, hence the variations of Rijndael which can operate
on larger data block sizes are not included in the actual FIPS standard. An
outline of Rijndael is shown in Figure 3-1.

Rijndael comprises 10, 12 or 14 rounds when the key lengths are 128, 192
or 256 bits respectively. The transformations in Rijndael consider the data
block as a four column rectangular array of 4-byte vectors (known as the
State array). A 128-bit plaintext of 16-bytes, Bo, B), B2, B3 ... B15 , is
represented as an array of four rows and four columns as illustrated in Figure
3-2. Similarly, the key is represented as a rectangular array of bytes, as in
Figure 3-3, having four rows and a varying number of columns, Nk
dependent on the key length. When the key length is 128, 192 or 256-bits, Nk
is 4, 6 or 8 respectively.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations

Plain
Text

Key

Figure 3-1. Outline of 128-bit Key Rijndael Encryption Algorithm

Cipher
Text

59

The algorithm consists of an initial data/key addition, nine, eleven or
thirteen rounds when the key length is 128-bits, I92-bits or 256-bits
respectively and a final round, which is a variation of the typical round. The
Rijndael key schedule expands the key entering the cipher so that a different
sub-key or round key is created for each algorithm iteration.

Bo B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

Figure 3-2. State Rectangular Array

Nk = 4 Nk = 6 Nk = 8

Ko K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

------,-------_ .. - .. , .. _ .. _ ..
K16 : K 20 : K24 : K 28 ! ______ , ______ ..i..··_··,··_··_··1
K17 : K21 : K25 : K29 : ------------ - .. """1 .. - .. - ..)
K18 : K22 : K26 : K30 : ------'-------.. - .• """1 .• - .. - ..)
K19 : K23 : K27 : K31 : ______ 1 ______ -_ •• _ •• --'._- •• _ •••

Figure 3-3. Key Rectangular Array

3.2.1. Rijndael Round

The Rijndael round, as outlined in Figure 3-4, consists of four
transformations:
- SubBytes transformation - MixColurnns transformation
- ShiftRows transformation - XorRoundKey transformation

www.manaraa.com

60

Round
Input

Round
Key

Chapter 3

r---,
I I
I I
I I
I

~ ~ ---
Xor ~ -r. SubBytes ShiftRows MlxColumns

I RoundKey
I I
I I
I I
I I
I r I
I I
I I

I
I I
I I
1 ______ --- ____________ ~

Figure 3-4. Rijndael Round

Round
Output

These transformations can be considered as a non-linear layer, a linear
mixing layer and a key XOR layer. The SubBytes transformation is the S
Box of the Rijndael algorithm and it operates on each of the State bytes
independently. It is the non-linear layer and is constructed by finding the
multiplicative inverse of each byte in GF(28) and then applying an affine
transformation. The affine transformation involves multiplication by a
matrix, outlined in equation (3.1), followed by addition to the hexadecimal
number,Ox63.

bo 0 0 0 Bo
bl 0 0 0 BI
b2 0 0 0 1 B2 0

b3 0 0 0 B3 0
(3.1) +

b4 0 0 0 B4 0

b5 0 1 1 0 0 B5
b6 0 0 1 0 B6

b7 0 0 0 B7 0

The linear mixing layer involves the ShiftRows transformation, in which
the rows of the State are cyclically shifted to the left. Row 0 is not shifted,
row 1 is shifted 2 places, row 2 is shifted 2 places and row 3 is shifted 3
places. It also includes column mixing using maximum distance separable
(MDS) codes over GF(28). The columns of the State are considered as
polynomials over GF(28) for the MixColumns transformation, and multiplied
modulo X4 + 1 with a fixed polynomial c(x), where,

c(x) = '03' x3 + '01' x2 + '01' x + '02' (3.2)

and '03', '01' and '02' are hexadecimal numbers. In the final round the
MixColumns transformation is not included.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 61

The XorRoundKey transformation is the key XOR layer, in which each
byte in the round key is bitwise XORed to each byte in the State array. For
example, a State array byte, Bo will be XORed with the corresponding
Round Key byte, RKo, to obtain the output byte, Ao, as illustrated in Figure
3-5.

Bo I B4 I B8 I B12 RKo I RK4 I RK8 I RK12 Ao A4 A8 A12

Bl B5 Bg B13 RKI RK5 RKg RK13 AI A5 Ag A13

B2 B6 B10 B14 RK2 RK6 RKIO RK14 A2 A6 AIO A14

B3 B7 Bll B15 RK3 RK7 RKll RK15 A3 A7 All A15

Figure 3-5. Round Key and State Array Addition

3.2.2. Rijndael Key Schedule

The Rijndael key schedule consists of two parts: Key Expansion and
Round Key Selection. Key Expansion involves expanding the cipher key
into a linear array of 4-byte words, the length of which is determined by the
data block length, Nb, multiplied by the number of rounds, Nr plus 1, i.e. Nb *
(Nr + 1). The data block length, Nb = 4. When the key block length, Nk = 4, 6
and 8, the number of rounds is 10, 12 and 14 respectively. Hence the lengths
of the expanded key are as shown in Table 3-1.

Table 3-1. Length of Expanded Key for Varying Key Sizes

Data Block Length, Nb 4 4 4
Key Block Length, Nk 4 6 8
Number of Rounds, N, 10 12 14
Expanded Key Len2th 44 52 60

For example, when using a 128-bit key, the number of rounds in the
algorithm is 10 and therefore, the expanded key length is 44. The expanded
key is a linear array of 4-byte words, W[O] to W[43], the first four words of
which comprise the cipher key as illustrated in Figure 3-6.

www.manaraa.com

62

Ko K4

Kl K5

K2 K6

K3 KT

/CiPherKey

I
K8 K12 K16

K9 K13 KIT

KIO K14 K18

Kl1 K15 K19

K20

K21

K22

K23

I W[O] W[1] W[2] W[3]IIW[4] W[5] W[6] W[7] I

Round Key [OJ /' ""'" Round Key [1J

Figure 3-6. Expanded Key Array when Nk = 4

Chapter 3

Each remaining word, W[i] is derived by XORing the previous word,
W[i-1] with the word Nk positions earlier, W[i-Nk]. For words in positions,
which are a multiple of Nk, a transformation is applied to W[i-1]. Firstly, the
bytes in the word are cyclically shifted to the left. For example, a word
[a,b,c,d] becomes [b,c,d,a]. Next, each byte in the word is passed through
the Rijndael SubBytes transformation and finally, the result is XORed with a
round constant. The round constants required for each of the rounds are 4-
byte vectors, Rcon[i] = (RC[i], '00', '00',00') where the values ofRC[i] are
as outlined in Table 3-2. However, when Nk = 8, an additional transformation
is applied. For words in positions i > 8 where (i-4) is a multiple of Nk, each
byte of the word, W[i-1], is passed through the Rijndael S-Box.

Table 3-2. Key Schedule Round Constants

RC[I] = '01' RC[2] = '02' RC[3] = '04' RC[4] = '08' RC[5] = '10'

RC[6] = '20' RC[7] = '40' RC[8] = '80' RC[9] = 'IB' RC[IO] = '36'

In the Round Key selection process, the round keys are extracted from the
expanded key. In a design with Nr rounds, Nr + 1 round keys are required. For
example a 10-round design requires 11 round keys. Round key 0 is W[O] to
W[3] and is utilised in the initial data/key addition, round key 1 is W[4] to
W[7] and is used in round 0, round key 2 is W[8] to W[11] and used in
round 1 and so on as shown in Figure 3-6. Finally, round key 10 is used in
the final round.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 63

3.2.3. Decryption

The decryption process in Rijndael is effectively the inverse of its
encryption process. Data is first passed through an inverse of the final round,
then the inverses of the rounds and finally through the initial data/key
addition. The data/key addition remains the same as it involves an XOR
operation, which is its own inverse. The inverse of the round is found by
inverting each of the transformations in the round. The inverse of the
SubBytes operation is obtained by applying the inverse of the affine
transformation and taking the multiplicative inverse in GF(28) of the result.
In the inverse of the ShiftRows transformation, row 0 is not shifted, row 1 is
now shifted 3 places, row 2 by 2 places and row 3 by I place. Similar to the
data/key addition, Round Key addition is its own inverse. To invert the
MixColumns transformation, the State columns are multiplied modulo X4 + I
with a fixed polynomial d(x), where,

d(x) = 'OB'x3 + 'OD'x2 + '09'x + 'OE' (3.3)

and 'OB " 'OD', '09' and 'OE' are hexadecimal numbers.
During decryption, the key schedule does not change, however the round

keys constructed are now used in reverse order. For example, in a 10-round
design, round key 0 is utilised in the initial data/key addition and round key
lOin the inverse of the final round. Round key 1 is used in the inverse of
round 8, round key 2 in the inverse of round 7 and so on.

3.3. Review of Rijndael Hardware Implementations

Recently, a lot of attention has been focused on hardware
implementations of encryption algorithms as they achieve much higher data
rates than software-only solutions. This has been motivated by the growth of
technologies such as broadband wireless communications. Since the
selection of Rijndael as the AES, the highest performance single-chip
Rijndael design and one of the first implementations is the variable key
design presented in §3.4. [58, 59]. This is based on a single-chip Xilinx
Virtex-E implementation. As will be discussed, the 7 Gbitlsec design is a
128-bit key fully pipelined encryptor core.

Other work on AES algorithm hardware implementations has included
very high throughput designs, and small, low area designs. Currently, the
fastest Rijndael FPGA implementation reported in the literature is a heavily
pipelined design by Chodowiec et al. [63], which achieves a throughput of
12160 Mbits/sec. However, this requires three Xilinx Virtex XCVlOOO
devices. It performs both encryption and decryption but only supports a 128-

www.manaraa.com

64 Chapter 3

bit key and non-feedback modes of operation. A 5-stage pipe lined design by
Elbirt et al. [17] on the same device performs at a data-rate of 1937.9
Mbits/sec. McMillan and Patterson [64] carried out a Jbits implementation of
AES on an XCVI000 device, achieving a throughput of 900 Mbits/sec
utilising only 288 CLB slices and 32 BRAMs. However, similar to the DES
architecture by Patterson [49], the key schedule is performed in software and
thus the design is not a single-chip implementation of the full Rijndael
algorithm.

A number of ASIC implementations of the Rijndael algorithm also exist.
Ichikawa, Kasuya and Matsui's [33] unrolled implementation in 0.35f.lm
CMOS operates at 1950 Mbits/sec. The encryptor/decryptor implementation
by Weeks et al. [32] in 0.5f.lm CMOS, performs at a rate of 5745 Mbits/sec.

Table 3-3 provides a specification summary of the 128-bit key Rijndael
pipelined and unrolled implementations described above.

Table 3-3. Specifications of 128-bit Rijndael Pipelined and Loop Unrolled Implementations

Manufacturer Type Device Area Data
of Used Rate

Design Mbits/sec

Chodowiec, Khuon, Gaj P XCV 1000 12600 CLB slices 12160
[63] Over 3 devices x3 80BRAMs
Elbirt et al. [17] SP XCV 1000 10992 CLB slices 1938
McMillan, Patterson [64] P XCV 1000 288 CLB slices 900
Jbits implementation 32BRAMs
Weeks et al. [32] P 0.5!lm 420mm2 5745

CMOS
Ichikawa et al. [33) UL 0.35!lm 612,000 gates 1950

CMOS

Iterative designs of the AES include a 414 Mbitlsec design also by
Chodowiec et al. [63] and a 294 Mbitlsec design by Elbirt et al. [17], which
utilises 3528 CLB slices on a XCVI000 device. In both designs only a 128-
bit key is supported and the key scheduling is performed off-chip. A 353
Mbit/sec design by Dandalis, Prasanna and Rolim [23] incorporates the key
schedule, however, decryption, feedback modes of operation and longer key
lengths are not supported. The Jbit iterative design by McMillan and
Patterson [64] again implements the key schedule in software and achieves a
throughput of 250 Mbits/sec. The ASIC iterative implementation by Weeks
et al. [32] operates at 606 Mbits/sec.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 65

The majority of Rijndael implementations have used Xilinx Virtex
devices with some being implemented on CMOS ASICs. One exception is
the work of Mroczlowski [65], which is based on an Ahera EPFlOK250
PLD. This achieves a data-rate of 268 Mbits/sec utilising 20 Embedded
Array Blocks (EABs) and 1032 Logic Cells (LCs).

Table 3-4 summarises these 128-bit key Rijndael iterative hardware
implementations. The fastest Rijndael software implementation is
Gladman's [66] 325 Mbitlsec design on a 933 MHz Pentium III processor.

Table 3-4. Speci·fications of I28-bit Key Rijndael Iterative Implementations

Manufacturer Type of Device Used Area Data Rate
Desil!;n Mbits/sec

Chodowiec, Khuon, IL XCV 1000 2507 CLB slices 414
Gai [63]
Dandalis et al. [23] IL XCV 1000 5673 CLB slices 353

Elbirt et al. [171 IL XCV 1000 3528 CLB slices 294
McMillan, Patterson IL XCV1000 240 CLB slices 250
[64] 8 BRAMs
Jbits implementation
Mroczlowski [65] IL Altera 1032 LCs 268

EPF1Ok250 20EABs
Weeks et al. [32] IL 0.5!lmCMOS 34mm2 606

3.4. Design of High Speed Rijndael Encryptor Core

The Rijndael algorithm implementations presented in this chapter
concentrate on achieving high throughputs and thus are fully pipelined
implementations. Both designs are based on the Electronic Codebook (ECB)
mode of operation. Since they are fully pipelined implementations they will
also operate in Counter mode as discussed in chapter 2. The NIST's
recommended Rijndael modes of operation are outlined in chapter 4.

The main consideration in both the encryptor architecture and the 128-bit
key encryptor/decryptor design described in §3.5, is the memory
requirement. The Rijndael S-Box in the SubBytes transformation can be
implemented as a look-up table (LUT) or ROM. The values contained in this
LUT are given in Appendix C.l. This proves a faster and more cost
effective method than implementing the multiplicative inverse operation and
affine transformation. Since the State bytes are operated on individually,
each Rijndael round requires sixteen 8-bit to 8-bit LUTs. In the key

www.manaraa.com

66 Chapter 3

schedule, LUTs can also be used, as words are passed through the S-Box.
The Virtex-E and Virtex-E Extended Memory range of FPGAs are utilised
for implementation as they contain devices with up to 280 BRAMs.

A single BRAM can be configured into two single port 256 x 8-bit RAMs,
as illustrated in Figure 3-7; hence, 8 BRAMs are required for each round. As
described in §2.6.4, when the write enable of the RAM is low, transitions on
the write clock are ignored and data stored in the RAM is not affected.
Hence, if the RAM is initialised and both the input data and write enable
pins are held low then the RAM can be utilised as a ROM or LUT.

WEA
ENA
RSTA

---l>CLKA
ADORA [#:0]
DIA [#:0]

WEB
ENB
RSTB

---l>CLKB
ADDRB [#:0]
DIB [#:0]

DOA [#:0]

DOB [#:0]

Figure 3-7. Dual-Port Block SelectRAM

The ShiftRows transformation is simply hardwired as no logic is
involved. The MixColumns transformation can be written as a matrix
multiplication as given in equation (3.4), with a 4-byte input, ao, aj, a2, a3

and output, bo, bj, b2, b3•

bo 02 03 01 01 ao
01 02 03 01 a j

=
01 01 02 03 a2

(3.4)

The transformation is implemented by XORing the results of the
multiplications in GF(28) in accordance with equation (4.4), as illustrated in
Figure 3-8.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 67

Input

L ____ ~====~====~~l-b=~i)~~ Output

03

Figure 3-B. Design of MixColumns Transformation

3.4.1. Design to Support Three Key Lengths

The key scheduling component and the number of rounds are affected by
a requirement to support the varying key lengths. The 128, 192 and 256-bit
key lengths require to, 12 and 14 rounds respectively. Thus, an architecture
that supports 14 rounds and all three key lengths is initially designed. In the
VHDL code, generate statements are used to select the logic required for
each key length. This means that if a key length of 128-bits is required, only
the logic for that particular key length will be synthesised and similarly for
the 192 and 256-bit key lengths. Hence, two extra rounds will only be
created if a 192-bit key is required and four extra rounds will only be created
when a 256-bit key is selected.

3.4.2. Key Schedule Design

The flowchart in Figure 3-9 outlines the various stages involved in the
Rijndael key schedule for key lengths of 128, 192 and 256-bits. Nk, Nb and Nr

represent the key block length, the data block length and the number of
rounds respectively. The input to the key schedule is the cipher key and key
block length and the outputs are the round keys. The round keys are created

www.manaraa.com

68 Chapter 3

as required, hence, round key [0] should be available immediately, round
key [1] should appear one clock cycle later and so on.

The various functions utilised in the key schedule are as follows:
Rem Function: Returns the remainder value in a division. For example,

12/8 = 1 remainder 4; therefore, 12 rem 8 = 4.
Sub Word Function: Operates on a 4-byte word and each byte is passed

through the Rijndael S-Box.
Rot Word Function: Involves a cyclic shift to the left of the bytes in a 4-byte

word. For example, an input of XO,Xj,X2,X3, will produce
the output Xj,X2,X3,XO.

Rcon Function: Returns the 4-byte round constants outlined in Table
3-2.

When utilising a 128-bit key, forty words are created during key
expansion and every fourth word is passed through the SubBytes
transformation with each byte in the word being transformed. Hence, forty 8-
bit to 8-bit LUTs or twenty BRAMs can be utilised in its implementation.
However, since the round keys are constructed in parallel to the round
operations, only two BRAMs are required. The S-Box is only used in the
construction of the first word of every round key (a round key comprises
four words) and each BRAM is used in the construction of two bytes of a
word.

Therefore an iterative process can be used to access the two BRAMs and
the round keys are constructed as they are required by each Rijndael round.
The design assumes that the same key is used in anyone data transfer
session.

The construction of every fourth word, i = 4, 8 .,. 40, which incorporates
the BRAMs, is shown in Figure 3-10. As described in §3.2.2, words which
are not a multiple of four are created by XORing the previous word with the
word four positions earlier.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 69

i = i + 1

Figure 3-9. Rijndael Key Schedule

www.manaraa.com

70

W3

W7

W39

Chapter 3

Rcon(i/4)
W(i-4) r······················· .. ···························· .. ,

~+t-1i-1*1-)---i~W(i)

Figure 3-J O. Construction of every Fourth Word in 128-bit Rijndael Key Schedule

Therefore, in the fully pipelined 128-bit key Rijndael design, a total of 82
BRAMs are utilised - 80 BRAMs are required for the 10 rounds and a
further 2 for the key schedule. In the 192-bit architecture every sixth word is
passed through the SubBytes transformation and hence, the 192-bit key
schedule also requires 2 BRAMs. Similarly, in the 256-bit key design every
eighth word and each word i > 8, where (i-4) is a multiple of 8 requires the
use of 2 BRAMs. Therefore, 98 and 114 BRAMs are required by these
implementations respectively.

3.5. Encryptor/Decryptor Core

In Rijndael decryption, the inverse of the SubBytes transformation can
also be implemented as a LUT. However the values in this LUT are different
to those required for encryption. The LUT required in Rijndael decryption is
given in Appendix C.2. Therefore, it is necessary to include both LUTs in
order to accommodate encryption and decryption. One method would
involve doubling the number of BRAMs utilised, however, this would prove
costly on area. In the novel Rijndael encryption/decryption design presented
here, this was overcome by the addition of just two BRAMs, which were
utilised as ROMs, one containing the initialisation values for the LUTs
required during encryption, the other containing the values for the LUTs
required during decryption. Therefore, instead of initialising each individual
BRAM as a ROM, when the design is set to encrypt, all the BRAMs are
initialised with data read from the ROM containing the values required for
encryption. When the design is set to decrypt, the BRAMs are initialised
with data from the ROM containing the values required for the decryption
operation. This initialisation procedure is outlined in Figure 3-11.
Effectively, only one initialising BRAM is necessary to store the required
encryption and decryption values. However, since such a high number of
BRAMs need to be initialised, the use of two BRAMs helps reduce overall
fanout.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 71

Encrypt
ROM

Decrypt
ROM

Round 0 Final Round

!'''LFsiiil'i::FsiiilLFsin'l.,rBikl
"]~~~~

'''L~T:~L~l,,~

1-'----------.... -

Ene/Dec

r--------------,.
!"LFsiiil'r:FsiiilLFsinl"rBikl r-'''! ~~~~
"'r:~if!::~i'r'~i'll"~~1

Figure 3-11, Initialisation of Block RAMs in Rijndael Design

The InvShiftRows transformation is hardwired. Multiplexors (MUXs)
select between the ShiftRows and InvShiftRows wiring as depicted in Figure
3-12. Similarly to Figure 3-8, the InvMixColumn transformation can be
implemented by XORing results of the multiplications in GF(28) arising
from equation (3.5). Again, MUXs are used to select between the values
required for encryption and those required during decryption.

bo OE OR OD 09 ao
bl 09 OE OR OD a l

= (3.5)
b2 OD 09 OE OR a2

b3 OR OD 09 OE a3

Since the encryptor/decryptor core design assumes a key length of 128
bits, the design of the key schedule is a simplification of that shown in the
flowchart illustrated in Figure 3-9. During decryption, the values of the
LUTs utilised in the key schedule do not change, hence, the LUTs can
simply be implemented as ROMs. However, the round keys are used in
reverse order. The initialisation process for either encryption or decryption
takes 256 clock cycles as the 256 values contained in each ROM are read.
However, this delay can be reduced by the addition of further initialising
ROMs. When encrypting data, the keys are produced as each round requires
them, therefore, the encryption will take 10 clock cycles corresponding to
the 10 rounds when using a 128-bit key. The design assumes that the same
key is utilised during a session of data transfer. If decrypting data, the
initialisation process will be as described above. However, initial decryption
will take 20 clock cycles, 10 clock cycles for the required round keys to be

www.manaraa.com

72 Chapter 3

constructed and a further 10· corresponding to the 10 rounds. The overall
128-bit key encryptor/decryptor design, therefore, requires 84 BRAMs.

ShiftRow

Row 0

Input -~--i

Row 2

;
i...j

I

Ene/Dec . _._. ___ . _._._. _. _. _. _. _. _. _. _. ___ . _. _. _. __ ... _. _. _. _ ._. _. _. _. ___ ._ . ..i

Figure 3-12. ShiftRows and InvShiftRows in EncryptorlDecryptor Design

3.6. Performance Results

Output

The Rijndael designs were implemented using Xilinx Foundation Series
3.li software and Synplify Pro V6.0 on Xilinx Virtex-E FPGA devices. Data
blocks can be accepted every clock cycle and after an initial delay the
respective encrypted/decrypted data blocks appear on consecutive clock
cycles. The designs were verified using the test vectors outlined in the
Rijndael specification [56].

The 128-bit key Rijndael encryptor design, implemented on the Virtex-E
XCV812E-8BG560 device, utilises 2679 CLB slices (28%) and 82 BRAMs
(29%). Of the available lOBs, 385 of 404 are used. The design can use a
maximum system clock of 54.35 MHz and runs at a data-rate of 7 Gbits/sec.
This result proves to be one of the fastest single-chip Rijndael FPGA
implementations currently available. As discussed earlier, the only faster
FPGA implementation is that of Chodowiec, Khuon and Gaj [63], which has
a throughput of 12.16 Gbitlsec. However, this design requires 3 Virtex
XCV 1 000 devices.

For comparison purposes a Rijndael 128-bit decryptor design was also
implemented on the XCV8l2E-8BG560 FPGA device. This utilises 4304
slices (45%) and 82 BRAMs. It operates at a rate of 6.38 Gbit/sec using a
maximum system clock of 49.9 MHz. The variance in the encryption and
decryption performances is due to the different multiplier constants required
by each design. In encryption the multiplier constants are simply OxOl, Ox01,

www.manaraa.com

Rijndael Algorithm Architectures and Implementations 73

Ox02 and Ox03 (hexadecimal) while those used in decryption mode are
OxOB, OxOE, Ox09 and OxOD.

Both the 192-bit and 256-bit key encryption designs have been
implemented on Virtex-E XCV3200E-8-CGI156 devices, as they require a
higher number of lOBs than that available on the XCV812E device. The
192-bit key encryption design utilises 2577 CLB slices (7%) and 98
BRAMs. Of lOBs 448 of 804 are used. The design uses a maximum system
clock of 45.44 MHz and runs at a data-rate of 5.8 Gbits/sec. The 256-bit key
architecture requires 2995 CLB slices (9%), 114 BRAMs and 512 lOBs. The
design operates at39.88 MHz with a 5.1 Gbitlsec throughput. Other FPGA
implementations of Rijndael designs capable of supporting 128-bit, I92-bit
and 256-bit key lengths have typically been iterative designs. Weeks et al.
[32] carried out a fully pipelined ASIC implementation, which performs at
5.3 Gbits/sec for all three key lengths. Hence the 128-bit and 192-bit key
encryption designs prove more efficient than this ASIC implementation,
while the 256-bit key architecture achieves a comparable speed.

The Rijndael encryptor/decryptor architecture has also been implemented
on the Virtex-E XCV3200E-8-CGI156 device. This implementation utilises
7576 CLB slices (23%), 84 BRAMs and 385 lOBs. It runs at 25.3 MHz and
achieves a data-rate of 3.24 Gbits/sec. Since the initialisation process for
either encrypting or decrypting data is 256 clock cycles and the system clock
is 25.3 MHz, this corresponds to an initialisation time of 10 IlS. Other
encryptor/decryptor FPGA implementations have also typically been
iterative designs. However, Ichikawa et al. 's [33] fully unrolled 1950
Mbit/sec ASIC design and the 5745 Mbitlsec ASIC implementation by
Weeks et al. [32] perform both encryption and decryption. Therefore, the
design presented here compares very well with existing ASIC
implementations.

Table 3-5 summarises the performance results of both the high-speed
generic variable key encryptor design, the 128-bit key decryptor
implementation and the novel encryptor/decryptor implementation.

The high performance of the Rijndael designs presented is achieved for a
number of reasons:

• The designs are fully pipelined with data blocks being accepted
on every clock cycle.

• The use of dedicated Block RAMs: The complex and slow
operations involved in the SubBytes transformation, the
multiplicative inverse calculations over GF(28) and matrix
multiplication and addition, are replaced with simple LUTs.

• The layout of the Virtex-E architecture: An outline of the
Virtex-E architecture is provided in Figure 3-13 [24]. It is
evident that the BRAMs are located in columns throughout the

www.manaraa.com

74 Chapter 3

chip, with each memory column extending the full height of the
chip. Each Rijndael round involves implementation on both
CLBs and· BRAMs. Therefore, having an architecture where
these are located in close vicinity to one another throughout the
chip improves overall performance.

Table 3-5. Summary of High-Speed Rijndael Pipelined Implementations

Design Device
Area No. of Throughput

(CLB slices) BRAMs (Mbits/sec)

Generic Encryptor
XCV812E 2679 82 6956

Core: 128-bit Key
Generic Encryptor

XCV3200E 2577 98 5816
Core: 192-bit Key
Generic Encryptor

XCV3200E 2995 116 5104
Core: 256-bit Key
128-bit Key Decryptor

XCV812E 4304 82 6387
Core
128-bit Key Encryptor/

XCV3200E 7576 84 3239
Decryptor Core

3.7. Conclusions

High performance single-chip FPGA implementations of the Rijndael
algorithm are presented in this chapter. The generic variable key encryptor
architecture is among the fastest designs currently available which is capable
of generating cores to support all three required key lengths. The I 28-bit key
encryption design performs at a data-rate of 7 Gbits/sec, which is 3.6 times
faster than similar existing FPGA implementations and 21 times faster than
software implementations. An efficient Rijndael key schedule design that
can be utilised in both iterative and pipelined designs is also discussed.

Many previous Rijndael encryption-only designs are implemented on
Virtex XCVlOOO devices, which consist of only 32 BRAMs and therefore,
cannot support a fully pipelined Rijndael design. The Virtex-E and Virtex-E
Extended Memory family of FPGAs, however, contain up to 280 BRAMs
and can easily accommodate large unrolled designs. When used to
implement the Rijndael designs, these devices help to improve overall
throughput.

www.manaraa.com

Rijndael Algorithm Architectures and Implementations

&l
Q

','"
.....

, i
~

.' !XI

~ ~ &l
...I

0 !XI 0

&l i
...I ~ 0 !XI

."

~
0

i
~ .'

!XI

&l
Q

Figure 3-13. Virtex-E Architecture Overview

75

The novel encryptor/decryptor core runs at 3.2 Gbits/sec. This
implementation compares favourably with similar ASIC designs but is one
of the only fully pipe lined high-speed single-chip FPGA Rijndael designs
capable of both encryption and decryption. Typically, fully pipelined designs
that support both modes incur extremely high area overheads. However, the
architecture presented here achieves a high throughput while avoiding excess
RAM usage. This is afforded by the simple addition of two ROMs, which
are used to initialise the BRAMs required in each round with the respective
encryption or decryption values.

Rijndael has been approved by NIST as the FIPS encryption standard and
is set to replace DES in applications such as IPSec protocols, the Secure
Socket Layer (SSL) protocol and in ATM cell encryption. In general,
hardware implementations of encryption algorithms and their associated key
schedules are physically secure, as they cannot easily be modified by an
outside attacker. Also, the high speed Rijndael encryptor core and Rijndael
encryptor/decryptor core presented, should prove beneficial in applications
where speed is vital as with real-time communications such as satellite
communications, SONET OC-48 networks and electronic financial
transactions.

www.manaraa.com

Chapter 4

FURTHER RIJNDAEL ALGORITHM
ARCHITECTURES AND IMPLEMENTATIONS

4.1. Introduction

Since the selection of the AES in 2000, many Rijndael algorithm
hardware implementations have been carried out with emphasis on achieving
either low area or high performance designs. This is evident in the previous
chapter. In this chapter, the designs described in chapter 3 are further
developed and two novel Rijndael architectures are presented.

In the first of these architectures, a Look-Up Table (LUT) based
methodology is introduced, whereby the complex operations of the Rijndael
algorithm - the multiplicative inverse operation and multiplication and
addition in GF(28) - are replaced by LUTs. Therefore, these operations are,
in effect, pre-computed and the expected results for all possible inputs
placed in LUTs. This approach leads to high area requirements, however, it
produces very fast implementations. To illustrate this, a 10-stage fully
pipe lined LUT based Rijndael encryptor design [62, 67, 68] is described.
However, due to the area requirements, the LUT approach is best suited to
smaller iterative Rijndael designs.

An alternative generic and migratable architecture is also presented [69].
This allows the instantiation of a wide range of chip specifications. Cores
implemented from this architecture can perform both encryption and
decryption and support four modes of operation - Electronic Codebook
(ECB) mode, Output Feedback (OFB) mode, Cipher Block Chaining (CBC)
mode and Ciphertext Feedback (CFB) mode. Chip designs can also be
generated to cover all three AES key lengths, 128-bits, I 92-bits and 256-bits.

77

www.manaraa.com

78 Chapter 4

On-the-fly generation of the round keys required during decryption is also
possible [70]. The general, flexible and multi-functional nature of the
approach described, contrasts with previous designs which, to date, have
been focused on specific implementations. For the purposes of this chapter
the ideas presented are demonstrated by implementation in FPGA
technology. However, the architecture and IP cores derived from this are
easily migratable to other silicon technologies, including ASIC and PLD,
and are capable of covering a wide range of modern communication systems
cryptographic requirements.

This chapter begins with a description of the LUT-based Rijndael designs.
Next, the modes of operation which can be used with Rijndael are discussed
and the generic, flexible AES cryptographic architecture is then presented.
Performance evaluations and comparisons for both architectures are also
provided.

4.2. Look-Up Table Based Rijndael Architecture

In the LUT -based design approach described in this chapter, the complex
and slow operations of the Rijndael algorithm are implemented utilising
LUTs. These operations, which include multiplicative inverse operations and
multiplication and addition in GF(28), can be implemented in logic.
However, in the approach described here, these operations are pre-computed
for all possible inputs and the results placed in LUTs. High-speed designs
can be achieved utilising the LUT method and this is shown through the
implementation of a fully pipelined Rijndael encryptor core. The LUT
methodology, however, leads to high silicon area utilisation. Therefore, the
approach is evidently better suited to smaller area iterative designs. Hence,
LUT -based encryptor and decryptor iterative designs are also presented.

4.2.1. Fully Pipelined LUT-Based Design

In the LUT-based Rijndael designs it is evident that the SubBytes
transformation or S-Box of the Round function can be implemented as a
LUT or ROM. This proves a much more efficient method than implementing
the multiplicative inverse operation and affine transformation. However, the
ShiftRows and MixColurnns transformations can also be implemented as
LUTs rather than using logic. The design is based on equation (4.1),

(4.1)

where a and k represent the state and key inputs to the round respectively,
and e represents the output, as shown in Figure 4-1.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations

r--1 , , ,
d :a , Roun

Input -:+ ByteSub f-+ ShiftRow ~ Key ~ -. MixCol Addition

Roun
Key

d

, , , , , , , ,
:k

,
1 , , , , , ,

, '
1 ______ --- _______ ~

Figure 4-1. Rijndael Round During Encryption

The functions To, TJ, T2,and T3 are outlined in equation (4.2).

Round
Output

79

T. =[S[;~;]02] T. =[~~:~:~~] T =[S[~~:]03] T =[~~:~] (4.2)
o S[a] 1 S[a] 2 S[a]e02 3 S[a]e03

S[a]e03 S[a] S[a] S[a]e02

(S{ a] represents a byte, a, being operated on by the Rijndael S-Box)

Therefore, two further LUTs are required: LUT _02, containing the values
of the SubBytes LUT multiplied in GF(28) by the hexadecimal number Ox02,
i.e. S{aJ. 02, and LUT_03, containing values of the SubBytes LUT
multiplied in GF(28) by the hexadecimal number Ox03, i.e. S[aJ. 03.
LUT_02 and LUT_03 are given in Appendix D.l. Since the State bytes are
operated on individually, each Rijndael round will require 48 8-bit to 8-bit
LUTs or 24 BRAMs. Figure 4-2 illustrates the design required to achieve
the first two Round outputs. The final round excludes the MixColumns
transformation and hence only needs 8 BRAMs.

The key schedule has been designed using the iterative approach outlined
in §3.4.2 and thus only requires 2 BRAMs in its implementation. Therefore,
the overall pipelined design utilises 226 BRAMs (216 utilised in the 9
typical rounds, 8 in the final round and 2 for the key schedule).

www.manaraa.com

80

Roun
Key

d

d Roun
Inpu t

~ BlkRAM ~ BlkRAM ~ BlkRAM I-LUT - -
LUT_02 LUT_03

~1 ~ 1 ~ 1

i ! Ko,o,r--"'
! ! =;\r
i ! T: ,~

: i !!K"O~~ ! e10

, .. _ .. _______ .. _ .. J:.::=::=::=::=::=::=.~.:i:::~:::~ ,
i

~BlkRAM0 r-. BlkRAIII - r---. BlkRAM -
LUT LUT_02 LUT_03

--. 1
~ 1 4 1

Figure 4-2. LUT Based Rijndael Round Design During Encryption

Chapter 4

t-.; Round
Output

In the Rijndael round during decryption, as illustrated in Figure 4-3, the
data block and inverse round key are XORed and the result passed through
the InvMixColumns transformation, the InvShiftRows and the InvSubBytes
transformation. The design of a decryption-only implementation is based on
equation (4.3) where, b is the output of the datalkey addition and e is the
output of the InvSubBytes transformation. Five LUTs are required. The first
LUT is the inverse of the LUT utilised in the SubBytes transformation,
InvLUT. The four other LUTs required are (OE • bij), (OB • bij), (OD • bij)

and (09 • bij).

Inverse
Round
Input

Inverse
Round

Key

1---, , , ,
--:-+ , , , , , , , ,
, , ,

b Xor -.
RoundKey

T

8-. Inverse

Inverse -. Inverse

MixColumns ShiftRows SubBytes

--

Figure 4-3. RijndaeJ Round During Decryption

Inverse
Round
Output

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations 81

eO,j

el,j

eZ,j

e3,j

=

InvLUT[OE • bo,j $ OB • b"j $ OD • b 2,j $ 09 • b3,j]

InvLUT[09 • bO,j+3 EB OE • b l,j+3 EB OB • b Z,j+3 EB OD • b 3,j+3] (4.3)

InvLUT[OD • bo,j+z EB 09 • b ,•j +z EB OE • bz,j+z EB OB • b3,j+z]

InvLUT[OB. bo,j+' EB OD. b"j+' EB 09. bz,j+' EB OE. b3,j+l]

For example, the LUT (OE • bij) is constructed by multiplying every
possible byte from OxOO to Oxll by OxOE in GF(28) and similarly for the
other LUTs. These LUTs are outlined in Appendix D.2. 40 BRAMs per
round are required to implement a decryption-only design. The circuit
required to achieve the first two Round outputs during decryption is shown
in Figure 4-4.

Round Round
Input Key

Figure 4-4. LUT Based Rijndael Round Design During Decryption

Round
Output

The inverse of the final round can be implemented using only 8 BRAMs
since the InvMixColumns transformation is excluded. The key schedule
utilises 2 BRAMs, hence an overall decryptor design requires 370 Block
RAMs. It is not possible to implement a fully pipelined decryptor design on
an FPGA as yet, since the highest number of Block RAMs incorporated in a
device (XCV812E FPGA) is 280. In June 2002, Xilinx released an advance
product specification specifying Virtex-II Pro FPGA devices, which will
contain up to 556 BRAMs [71]. Therefore, it will be possible to implement
the LUT -based decryptor design in the near future.

www.manaraa.com

82 Chapter 4

4.2.2. Iterative LUT-Based Design

The LUT-based design approach is best suited to iterative
implementations which are naturally low in area. In the look-up table based
iterative Rijndael implementation, the Round is designed similarly to that
outlined above in §4.2.1 whereby the SubBytes, ShiftRows and MixColumns
transformations are all implemented using LUTs. A block diagram of the
overall iterative encryptor Rijndael design is shown in Figure 4-5. In this
design the plaintext is loaded over 4 clock cycles in 32-bit blocks and
similarly the ciphertext appears in 32-bit blocks. This leads to a lower lOB
count. There is an initial latency of 14 clock cycles before the first 128-bit
block of encrypted data appears; 4 clock cycles corresponding to the
plaintext loading and 10 clock cycles corresponding to the 10 rounds.
Subsequent encryption operations take 10 clock cycles as plaintext blocks
can be pre-loaded during the last four cycles of the Rijndael round
encryption operation. The key schedule is designed using the iterative
method, with each Round key being created as it is required by a Rijndael
Round. Control circuitry is used to synchronise the timing of the overall
design.

Plaintext
~ Rijndael .. Final f-+ --.j Data/Key {

~

Round Round

--.j Addition

i Key Control
-~ Schedule Circuitry

Ciphertext

Key

Figure 4-5. Overall Iterative Rijndael Block Diagram During Encryption

The Rijndael iterative encryptor design utilises 34 BRAMs - the Round
requires 24 BRAMs, the Final Round requires 8 BRAMS and the key
schedule uses 2 BRAMs.

An iterative decryptor design is possible using the LUT method. The
block diagram for the decryptor Rijndael design is depicted in Figure 4-6.
The LUT-based iterative decryptor design requires 50 BRAMs in its
implementation. The Final Round again only requires 8 BRAMs and the key
schedule 2 BRAMs. The Inverse Round utilises 40 BRAMs. An inverse
round takes 2 clock cycles to perform since each State byte must pass though
2 LUTs - either LUT_OB, LUT_OE, LUT_OD or LUT_09 and the InvLUT.
However, 2 blocks of data can be operated on at anyone time and therefore,

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations 83

after 20 clock cycles two 32-bit plaintext blocks will appear over 8 clock
cycles at the output. Hence, during decryption, the initial latency is 30 clock
cycles. It is necessary to wait 10 clock cycles for the Round keys to be
created and a further 20 clock cycles corresponding to the rounds. The
ciphertext input blocks can be loaded while the Round keys are being
created. Subsequent decryptions will take 20 clock cycles per 2 blocks of
data.

Ciphertext

I ~ Inverse Inverse Y Data/Key .-. ---. Final

{ Round Addition
Round

T

Plaintext

rl Key I Control
- SChedule! Circuitry Key

Figure 4-6. Overall Iterative Rijndael Block Diagram During Decryption

4.2.3. Performance Results and Comparison

The Rijndael designs presented have been implemented using Xilinx
Foundation Series 3.li software and Synplify Pro V6.0 on Xilinx Virtex-E
FPGA devices. Synplify Pro V6.0 has been used to provide pre-placement
timing results for the 128-bit key Rijndael encryptor design. The fully
pipelined LUT-based design implemented on the XCV812E-8-BG560
device utilises 2457 of 9408 CLB slices (26%) and 226 of 280 BRAMs
(81%). The implementation runs at a system clock of 93.9 MHz and
achieves a data-rate of 12 Gbits/sec. In comparison, timing results from pre
placement of the design described in §3.4, which uses BRAMs in the
implementation of the SubBytes transformation only, indicate a throughput
of 9.2 Gbits/sec. Although CLB usage in the pipelined design is low, many
applications have additional circuitry which can utilise the remaining CLB
resources. Therefore, in terms of pre-placement timing, the design is the
fastest single-chip Rijndael FPGA implementation currently available.
However, in order to obtain a corresponding high post-placement speed,
manual placement and routing of the design is required due to the large
number of BRAMs.

The LUT-based iterative encryptor and decryptor designs presented have
been implemented on the XCV400E-8-BG432 and XCV600E-8-BG432
devices respectively. The encryption design requires 1926 of 4800 CLB

www.manaraa.com

84 Chapter 4

slices and 34 of 40 BRAMs. It achieves a throughput of 685 Mbits/sec. The
decryption design uses 1937 of 6912 CLB slices, 50 of 72 BRAMs and
operates at 675 Mbits/sec. Both encryption and decryption LUT-based
implementations display a performance that exceeds that of previously
reported circuits. For example, the most competitive alternative
implementation is that reported by Weeks et al. [32]. This operates at 606
Mbitlsec and is based on a 0.5/-lm CMOS ASIC implementation.

Table 4-1 summarises the performance results of the LUT -based designs.
These results clearly highlight the benefits of the approach developed as a
result of this research.

Table 4-1. Summary of LUT-Based Rijndael Implementations

Design Type Area
No. of

Through-
of Device (CLB

BRAMs
put

Design slices) (Mbits/sec)

128-bit key LUT-Based
Encryptor Core P XCV812E 2457 226 12020

(Pre-placement timing)

128-bit key IL
LUT-Based XCV400E 1926 34 685

Encryptor Core
128-bit key IL
LUT-Based XCV600E 1937 50 675

Decryptor Core

4.3. Rijndael Modes of Operation

The FIPS Publication 81 [41] defines various modes of operation for the
DES algorithm, which may be used in a wide variety of applications.
However, the Rijndael algorithm has replaced DES as the FIPS encryption
standard. Therefore, in conjunction with the approval of AES, the NIST
issued a special publication 800-38A [72] in December 2001, in which they
recommended five confidentiality modes for use with any approved block
cipher algorithm. In this publication the four DES modes of operation, ECB,
CBC, OFB and CFB, have been updated and the Counter mode (CTR) is
added. The Rijndael ECB, CBC and CFB modes are similar to the equivalent
DES modes of operation, as outlined in chapter 2. The main difference in the
updated standard is that any approved symmetric algorithm can be utilised in
the modes and not solely the DES algorithm. In this section, the modes are

www.manaraa.com

Further RijndaelAlgorithm Architectures and Implementations 85

described with the assumption that Rijndael is the underlying encryption
algorithm.

4.3.1. ECB Mode

Rijndael operating in ECB mode involves 128-bit blocks of data being
encrypted by the Rijndae1 algorithm to obtain 128-bit blocks of ciphertext.
The ciphertext blocks are then sent to the recipient of the message where
they are decrypted to give the original data.

4.3.2. CFB Mode

In CFB mode the Initialisation Vector (IV) block is encrypted utilising the
Rijndael algorithm and n-bits of the result are XORed with n-bits of the
plaintext to produce n-bits of ciphertext. The n-bit ciphertext is fed back to
form part of the input to be used in the next encryption. After the first
encryption the initial input is shifted left by n-bits and the next input
therefore consists of a (J 28 - n)-bit data block concatenated with the n-bits
of the ciphertext. Decryption in CFB mode also uses Rijndael encryption.
However, in decryption n-bits of the result are XORed with n-bits of the
ciphertext to produce n-bits of the original plaintext.

4.3.3. CBC Mode

The IV block is XORed with the first 128-bit plaintext in CBC mode, and
the result encrypted using Rijndael to obtain the first ciphertext block. The
next plaintext block is XORed with the first ciphertext block prior to
encryption. This process is continued until a new message is loaded. CBC
mode in decryption uses Rijndae1 decryption and the IV blocks are XORed
with the decryption results to obtain the original plaintext.

4.3.4. OFB Mode

OFB mode is different to its equivalent DES mode in that the operations
are carried out on full 128-bit blocks of data rather than n-bits of a data
block. The IV is encrypted utilising the Rijndae1 algorithm and the result is
XORed with the plaintext to produce the ciphertext. The result is then fed
back to form the input used in the next encryption as shown in Figure 4-7.
The IV data must be different for each encryption operation carried out using
a specific key. If the final plaintext block is only a partial block ofy-bits, it is
XORed with the most significant y-bits of the final encryption result to
obtain the corresponding ciphertext. Decryption in OFB mode uses Rijndael

www.manaraa.com

86 Chapter 4

encryption. During decryption, however, the result is XORed with the
ciphertext to produce the original plaintext.

128-bit block

Figure 4-7. Rijndael in OFB Mode

4.3.5. Counter (CTR) Mode

In Counter (CTR) mode a counter is used in place of the IV block.
Therefore, a 128-bit counter block is encrypted using Rijndael and the output
is XORed with a plaintext block to obtain the ciphertext, as illustrated in
Figure 4-8. It is essential that a different counter value is used for each new
plaintext block. Similar to OFB and CFB mode, decryption requires the
Rijndael encryption process. The same counter block is encrypted, but in
decryption the result is XORed with the ciphertext to obtain the original
plaintext block.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations 87

Figure 4-8. Rijndae1 in CTR Mode

4.4. Overall Generic AES Architecture

Previous AES implementations have been specific-purpose solutions. The
objective of the research described in this section was to achieve an efficient,
generic, flexible and silicon migratable AES architecture which contained
the best combination of features and characteristics for use in modem
communication applications. In order to achieve such an implementation a
number of aspects have to be considered.

Performance
The performance of the implementation can be crucial. The encryption

algorithm design must accommodate communication transmission rates.
Slow running cryptographic algorithms translate into consumer
dissatisfaction while at the other extreme, fast running encryption might
mean high product costs since very high speed systems typically imply
custom-built hardware devices [73].

Area
The area utilised by an implementation is also an issue - very high speed

cores can be achieved by adopting heavily pipelined designs. However, this
leads to very high silicon area, which implies high product costs and high
power consumption.

www.manaraa.com

88 Chapter 4

Functionality
Many cryptographic algorithm implementations are specific one-off

designs. They are designed solely to either encrypt or decrypt data with
specifically defined parameters. However, the majority of applications
require a core capable of performing more than one function. The NIST
requested that the AES algorithm would accept not one, but three key
lengths. Also a design which performs both encryption and decryption is an
obvious requirement for many applications.

Reusability
In recent years, with a shift to the system-on-chip integration, it is

important to consider design reuse so that cores can be integrated quickly
into silicon systems [74]. In general, Hardware Description Languages
(HDLs) provide methods to capture reusable designs without compromising
the integrity of the underlying designs [75]. VHDL features that facilitate
reuse include generics, packages, generate statements and configuration
specifications. A wholly generic design can facilitate a varying number of
pipeline stages. However, if pipeline stages are accommodated, feedback
modes of operation cannot be supported. Also, only very specific
applications would require fully pipelined encryption designs, which achieve
high speeds in the range of gigabits per second at the expense of very high
area utilisation.

It is very important to achieve the correct balance between design
performance, area, functionality and reusability in any implementation. The
overall generic architecture presented in this chapter attempts to combine all
these characteristics in an optimal way. The design is an iterative
architecture, which leads to lower area utilisation and higher computational
efficiency. This patented approach [62, 70] can generically accept three
different key lengths, 128-bits, 192-bits and 256-bits with on-chip key
scheduling. The design supports both encryption and decryption and can also
be operated in ECB mode and the feedback modes, CBC, OFB and CFB.
Counter mode is not incorporated in the design as it is not yet supported in
many applications. However, modifications to include the mode can be
easily achieved since it is a simplification of OFB mode [29]. The memory
blocks in the design are targeted towards Xilinx FPGA Virtex Block RAMs.
However, these components are easily modified into technology
independent memories, and thus reusable components, as discussed in
§4.4.4.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations 89

4.4.1. Design of Generic AES Architecture

The generic Rijndael architecture is an iterative design. The 128-bit data
and the 128-bit IV block required in the feedback modes are loaded in 32-bit
blocks over 4 clock cycles. Similarly, the 128-bit, 192-bit and 256-bit keys
are entered in 32-bit blocks over 4, 6 and 8 clock cycles respectively. This
ensures that the number of input and output pins required on the chip is kept
to a minimal, and thus, smaller and cheaper hardware devices can be chosen
for implementation. This proves highly attractive to both FPGA and ASIC
technologies. When using a 128-bit key, data blocks are accepted every 10
clock cycles - the data is entered over four clock cycles and encryption is
performed in the next 10, corresponding to the 10 algorithm rounds. In the
192-bit and 256-bit key designs, data is accepted every 12 and 14 clock
cycles respectively. Similar to the input data, the encrypted/decrypted data is
output in 32-bit blocks over 4 clock cycles. Many applications will only
require the use of one of the three possible key sizes. Therefore, the key
length is a generic input of the design. Having all three key length design
options available only increases the area overhead unnecessarily. However,
if a different key size is required, the core does not need to be re-designed -
the generic key-length input value is simply changed and the design re
synthesised.

Both encryption and decryption are supported. The main distinction
between encryption and decryption-only designs is that the values of the
LUTs used to implement the SubBytes transformation differ. One method to
provide both encryption and decryption capabilities involves the addition of
2 initialising LUTs or ROMs, as described in §3.5. However, this method
incurs a latency each time there is a change of mode from encryption to
decryption and vice versa. In this generic architecture, the change from
encryption to decryption of data can occur on-the-fly. Since the architecture
is iterative, the Round and Inverse Round transformations can both be
included, incurring only a small area overhead. Figure 4-9 pictorially
describes the encrypt/decrypt Rijndael design for a key length of 128-bits.
The load counter loads the data and key over 4 cycles in 32-bit blocks.
Similarly, the output counter outputs the encrypted/decrypted data over 4
cycles. The 128-Key counter controls the timing of the overall design. The
192-bit and 256-bit key implementations are similar to that shown in Figure
4-9. The only difference between these designs is in the load and key
counters. In these cases the load counter loads the key over 6 and 8 cycles
respectively and the data over 4 cycles. 192-key and 256-key counters are
also required to control the timing in these circuits.

The Rijndael round is as described in previous architectures. The
SubBytes transformation has been implemented using 16 8-bit to 8-bit LUTs

www.manaraa.com

90 Chapter 4

or 8 BRAMs when this is targeted towards a Xilinx Virtex device. Similarly
the InvSubBytes transformation in the inverse round has been implemented
utilising 16 LUTs. An iterative process has been used to access the round or
inverse round for nine, eleven or thirteen cycles depending on the key
length, analogous to the algorithm's 9, 11 or 13 typical rounds. On the tenth,
twelfth or fourteenth cycle, again depending on the key length, the
MixColumns and InvMixColumns transformations are bypassed
corresponding to the final round and inverse final round respectively. The
key schedule for encryption is designed using the iterative process outlined
in §3.4.2. The 128-bit, I 92-bit and 256-bit key schedule designs each require
2 BRAMs in their implementation.

Figure 4-9. Outline of Encrypt/Decrypt Rijndael 12S-bit Key Design

4.4.2. On-the-Fly Generation of Decryption Rounds Keys

During decryption, the Rijndael key schedule remains unchanged. The
round keys created during key expansion are simply utilised in reverse order
as depicted in Figure 4-10. Typically, during the decryption process it is
therefore necessary to wait at least 10, 12 or 14 clock cycles, depending on
the key length, for the round keys to be created before decryption can
commence. Registers can be used to store the keys until they are required.
Alternatively, the Round keys can be pre-computed and stored in memory.

However, on-the-fly calculation of the Round Keys for decryption can be
achieved. If the final Nk words created during key expansion in the
encryption process are utilised as the Cipher Key during decryption, the
Round keys required for decryption can be created as they are needed by the
inverse Rounds.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations

Inv
Final
Rnd

Rnd
Key 10

Rnd
Key 9

Inv
Rnd

1

Rnd
Key 8

Inv
Rnd

2

Rnd
Key 7

Rnd
Key 1

Data/Key
Addition

Rnd
Key 0

Figure 4-10. Round Key Utilisation in Decryption Process for I 28-bit Cipher Key

whenNk = 4 or 6:
for(1 = Nb*(N,+1)-1; I~ Nb*(N,+1)-Nk; 1--)

W[I] = (InvClpherKey[4*(Nb*(N, + 1)-1-1)].lnvClpherKey[4*(Nb*(N, + 1)-1-1)+1].
InvClpherKey[4*(Nb*(N, + 1)-1-1)+2]. InvClpherKey[4*(Nb*(N, + 1)-1-1)+3);

for (I = Nb*(N,+1) -1; I ~ Nk; 1-)
{

temp = W[I - 1];
If (I % Nk == 0)

temp = SubWord(RotWord(temp)) XOR Rcon(I/Nk);
W[I-Nkl = W[I] XOR temp;

whenNk =8:
for (1= Nb*(N,+I)-I; I ~ Nb*(N,+I)-Nk; I --)

W[I] = (InvClpherKey[4*(Nb*(N, + 1)-1-1)]. InvClpherKey[4*(Nb*(N, + 1)-1-1)+1].
InvClpherKey[4*(Nb*(N, + 1)-1-1)+2]. InvClpherKey[4*(Nb*(N, + 1)-1-1)+3);

for (I = Nb*(N,+1) -1; I ~ Nk; 1--)
{

temp = W[I - I];
If (I % Nk == 0)

temp = SubWord (RoiWord (temp)) XOR Rcon(I/Nk);
else If (I % Nk == 4)

temp = SubWord (temp);
W[I-Nkl = WII] XOR temp;

Figure 4-11. Pseudo-Code of the Inverse Key Expansion Procedure

91

The Nk words used as the Cipher Key in decryption are known as the
'Inverse Cipher Key'. Typically, for decryption, the sender of the ciphertext
will send the receiver the original key used to encrypt the message.
However, if the sender sends the receiver the Inverse Cipher Key, the
receiver can then begin to decrypt the message immediately. Hence, the 10,
12 or 14 clock cycle latency is removed and there is no need to store Round
keys in memory. Pseudo-code for the inverse key expansion procedure is
outlined in Figure 4-11, where Nk is the key block length, Nb is the data
block length and Nr is the number of rounds. Block diagrams illustrating the
design of the memory-less decryption key scheduler for the three key lengths
are provided in Figure 4-12, Figure 4-13 and Figure 4-14.

www.manaraa.com

92 Chapter 4

The 128-bit, 192-bit and 256-bit key designs require a total of 20 BRAMs
(40 LUTs) - 8 in the round, 8 in the inverse round, 2 in the encryption key
schedule and 2 in the decryption key schedule.

4-byte Shift Register
-+---

................... M N ~ 0l~ ______________________________________ ~

;!, ~;!. :!:.
3: 3: 3: 3: Rcon(i/4)

Figure 4-12. Hardware Design of Inverse Key Scheduler: Nk = 4

6-byte Shift Register

+--

M' N' 5' OJ' Iii'
~ ~ ~ ~ t!. t!.
3: 3: ~ ~ ~ ~

Rcon(i/6)

- ..---
Rot r-- Sub D---:

Word Word ~ (\ i rem 6= 0 - ~ \

Figure 4-13. Hardware Design of Inverse Key Scheduler: Nk = 6

4.4.3. Design to Support Modes of Operation

'»)-

Since the Rijndael design is iterative, it is possible to support the various
feedback modes of operation. Figure 4-15 illustrates an outline of an
architecture that includes the ECB, CBC, OFB and CFB modes of operation.

In ECB mode the input data is directly entered into the Rijndael core.
Encryption or decryption is performed and the result is the output data. Data
blocks can be accepted every 10, 12 or 14 clock cycles.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations

8-byte Shift Register ..--

i i
.....

I en ;;' ;:::' u;'

i i M M ~ i i ~

Rcon(i/8)

- -
Rot i--I Sub D---;

Word Word !------:I (\ . 8- 0 __ __ \~rem -

,--- \. / Nk:::8
Sub /i rem 8::: 4

Word
'-

~D-

Figure 4-14. Hardware Design ofInverse Key Scheduler: Nk = 8

93

In the two feedback modes, CFB and OFB, the l28-bit initialisation
vector is entered into the algorithm core and Rijndael encryption performed.
The result is then XORed with the input data to produce the CFB or OFB
output. In OFB mode for both encryption and decryption, the Rijndael result
is fed back to form the next input of the algorithm core. During encryption in
CFB mode the output ciphertext is fed back, while during decryption, the
input ciphertext is fed back.

To encrypt data in CBC mode, the input data is initially XORed with the
initialisation vector and the result is entered into the Rijndael core.
Encryption is performed and the result is the output data. The encrypted
result is then fed back and XORed with the next input data block. To decrypt
data, the input data is directly entered into the algorithm core. Decryption is
performed and the result is XORed with the initialisation vector to form the
output. The ciphertext input will be XORed with the next decrypted input
block result to form the next output.

The feedback modes operate on 128-bit plaintext blocks, hence, similarly
to ECB mode, new data blocks can be accepted every 10, 12 or 14 clock
cycles. Data transmission rates differ between applications. Therefore, to
accommodate these varying transmission rates, a FIFO could be used to
control the flow of the input data to the cores.

www.manaraa.com

94

INPlIr
DATA

KEY

NEW
DATA

esc
DEC

t..,~
('0F8CIK;I \"'" RJJNDAEL
ECB CORE

&
KEY

SCHEDULE 03ll1T \~

121
~/~

121

~/,\

""" escENe

~'/'\ =/'\
CRS CRI

ENe

Figure 4-15. Outline of Design for Modes of Operation

4.4.4. Reusable Memory Components

Chapter 4

ROY

The S-Boxes of the Rijndael algorithm considered to this point have been
implemented as LUTs, targeted towards Xilinx Virtex-E Block RAM
components. However, it is possible to create general, technology
independent memory banks. For example, a small 2-bit to 2-bit LUT can be
described in VHDL as a general ROM component as illustrated in Figure 4-
16. To target the general ROM component to a Virtex Block RAM
component simply involves adding an attribute to the code. For example, if
the design is synthesised using Synplify Pro the attribute syn Jamstyle can
be utilised, as shown in Figure 4-16. The 2-bit to 2-bit LUT is then mapped
to a Virtex RAMB4_S2 component. The RAMB4_S2 component can also be
directly instantiated in VHDL, as outlined in Figure 4-17. However, this
limits the use of the design to only Xilinx Virtex devices, whereas the
general memory design is reusable in other technologies.

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations

library Ieee;
use ieee.std_logic_llB4.all;
use ieee.stdJogic_unsigned.all;

library synplify;
use synplify.atfributes.all;

entity smallmem is
port(clk,write,reset: in stdJogic;

Addr : in stdJogic_vector(10 downto 0);
Dataln : in std_logic_vector(1 downto 0);
DataOut : out std_logic_vector(1 downto 0));

end smallmem;

architecture smallmem_synth of smallmem is

type ROMtype is array (integer range 2047 downto 0) of stdJogic_vector{1 downto 0);
signal ROM : ROMtype;

attribute syn_ramstyfe of ROM: signal is "block_ram";

signal Addrtemp : stdJoglc_vector(10 downto 0);

begin
procBss(clk)

begin
if clk'event and clk = '1' then

if write = '1' then
ROM(ConvJnteger(Addr)) <= Dataln;

end if;
Addrtemp <= Addr;
end if;

end process;

DataOut <= ROM(ConvJnteger(Addrtemp));

Figure 4-16. VHDL Code for General ROM Component

4.4.5. Implementation Results

95

The generic AES architecture described has been captured using VHDL
and numerous designs instantiated using Virtex-E XCV600E-8BG432
FPGAs, Xilinx Foundation Series 3.li and Synplify Pro V6,0 software were
used in the synthesis of these circuits. The results obtained, show that the
128-bit key implementation can operate at up to 310 Mbits/sec utilising 4681
CLB slices and 20 BRAMs. The 192-bit key design can run at a data-rate of
277 Mbits/sec and requires 4382 CLB slices and, again, 20 BRAMs. The
256-bit design is the largest of the three implementations, with the
corresponding figures being 268 Mbits/sec, 4992 CLB slices and 20
BRAMs.

Interestingly, the I 92-bit design is smaller than the 128-bit
implementation. This is a consequence of the key expansion procedure. For a
128-bit key, every fourth word is passed through a LUT, with this occurring
ten times. However, in the case of the 192-bit key there are only six
instances of a word being passed through an LUT, resulting in a smaller
design. Since each core utilises full 128-bit feedback, the speed of
encryption when in OFB, CBC and CFB modes is identical to that obtained

www.manaraa.com

96 Chapter 4

for the ECB mode. Therefore the results outlined above apply for all four
supported modes of operation.

library IEEE;
use IEEE.stdJogic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity smallmem is

port(clk,write,reset : in stdJogic;
Addr : in stdJogic_vector(10 downto 0);
Dataln : in std_logic_veclor(l downtoO);
DataOut : out stdJogic_vector(l downtoO»;

end smallmem;

architecture smallmem_synth of smaUmem is

component RAMB4_S2

port (WE,EN,RST,ClK
ADDR
DI
DO

end component;

: in stdJogic;
: in stdJogic_vector(10 downto 0);
: in std_logic_vector(l downtoO);
: out stdJogic_vector(l downtoO»;

signal Addrtemp: stdJogic_veclor(10 downto 0);

begin

port map(WE => write, EN => '1', RST => reset, ClK => clk,
ADDR => Addr, DI => Da:aln, DO => DataOut);

end smallmem_synth;

Figure 4-17. RAM Component Instantiated in VHDL

As discussed in chapter 3, previous implementations have been based on a
128-bit key, with the majority implemented, using Xilinx Virtex devices.
Table 4-2 summarises the main characteristics of these implementations and
the characteristics of the generic architecture. From the table, it is observed
that the 128-bit implementation presented here compares very favorably in
terms of important parameters such as area and data rate. However, the key
aspect of the approach is that it achieves this with much greater on-chip
capability than previous implementations. This includes supporting:

Both encryption and decryption
Three feedback modes
On-chip key scheduling

www.manaraa.com

Further Rijndael Algorithm Architectures and Implementations 97

Table 4-2. Overall Comparison of 128-bit Key Rijndael FPGA Implementations

ENC
KEY SPEED

3 SCHED. 118-bit
and

KEYS
MODES

ON
DEVICE AREA key

DEC CHIP Mbps

McLoone,
XCV600E

4681 slices
310

McCannv • • • • 20BRAMs
Mroczlowski ALTERA 1032 LCs

268
f651

- - - • EPFlOK250 20EABs
Chodowiec

XCV 1000 2507 slices 414 et al.f631 • - - -
Dandalis

XCV 1000 5673 slices 353
et al f231

- - - •
Elbirt et al.

XCV 1000 3528 slices 294
f17l - - • -

4.5. Conclusions

In this chapter a LUT-based design approach is described, whereby the
complex and time-consuming operations of the Rijndael algorithm, i.e. the
multiplicative inverse operations and multiplication and addition in GF(28),

are pre-computed for all possible input values and the results placed in
LUTs. This methodology leads to very high-speed circuit implementations.
The LUT-based fully pipelined Rijndael Virtex-E implementation presented
in this chapter achieves a data-rate of 12 Gbits/sec, a factor 6 times faster
than previous single-chip implementations on the XCVI000 device. The
approach results in high area requirements and currently, there are no FPGA
devices on which to implement the LUT-based decryptor design, which
requires 370 BRAMs. However, Xilinx are in the process of introducing a
new family of Virtex-II Pro FPGAs that will consist of devices with up to
556 BRAMs. Hence, it will be possible to implement the decryptor design
on this technology. The LUT methodology is more suited to iterative
Rijndael designs and both encryptor and decryptor iterative implementations
are possible. The LUT -based encryption iterative Rijndael design, when
implemented on the XCV 400E device, proves a factor of 1.6 times faster
than a typical design in which only the SubBytes transformation is mapped
to a LUT. It is also faster than previous iterative implementations on
XCVI000 devices.

Performance, size, cost functionality and design reusability must all be
carefully considered in the design of encryption systems. Previous work,
including the research outlined in chapter 3, on such hardware
implementations has led to specific, one-off, solutions. This chapter extends
this research by presenting a new generic architecture for implementing

www.manaraa.com

98 Chapter 4

multi-functional Rijndael encryption cores in silicon. This allows the rapid
creation of silicon solutions, which perform both encryption and decryption
in ECB, CBC, CFB and OFB modes of operation. It also allows separate and
dedicated cores for 128-bit, 192-bit and 256-bit key designs to be effortlessly
synthesised. All these designs incorporate on-chip key scheduling and can be
readily accommodated on state-of-the-art single chip FPGAs and PLDs.
This has been demonstrated through implementation on a Xilinx Virtex-E
FPGA since this device is well suited to implementations of the Rijndael
algorithm. However, the architecture presented is also readily migratable to
other FPGAJPLD technologies and indeed to ASIC implementation. Design
studies, for example, indicate that the iterative 128-bit key design (which
operates at 310 Mbits/sec on a Virtex-E device) will operate at Gbitlsec
speeds when implemented on current ASIC technology. Thus, even higher
performance implementations can be derived either in the form of standalone
ASIC chips or embedded SoC solutions where performance and/or volumes
demand this type of solution. Moreover, the FPGA implementations
produced have a silicon area and throughput comparable with or better than
previous one-off solutions.

All of the designs achieve throughputs that are more than sufficient for
modem communications applications, such as current and next generation
wireless products. The IEEE Wireless LAN Standard 802.11b requires the
accommodation of transmission rates of just 11 Mbits/sec, whilst the more
advanced 802.IIg standard currently being developed requires data rates of
up to 54 Mbits/sec.

In the future, Information Technology (IT) applications, such as wireless
phones, wireless computing, pay-TV and audio/video copy protection
schemes will be realised as embedded systems and therefore will rely
heavily on security mechanisms [73]. Hence there is a real need for efficient,
reusable multi-functional IP encryption cores such as those that can be easily
derived from the generic AES architecture presented in this chapter.

www.manaraa.com

Chapter 5

HASH ALGORITHMS AND SECURITY
APPLICATIONS

5.1. Introduction

The security services required to guarantee a fully protected networking
system are [76,29]:

• Confidentiality - protecting the data from disclosure to
unauthorised bodies

• Authentication - assuring that received data was indeed
transmitted by the body identified as the source

• Integrity - maintaining data consistency and ensuring that
data has not been altered by unauthorised persons

• Non-repudiation - preventing the originator of a message from
denying transmission

Cryptographic mechanisms exist which provide these vital security
services. Private-key and public-key encryption algorithms provide
confidentiality and can provide authentication and integrity protection. Hash
algorithms and digital signatures ensure authentication and integrity
protection, while digital signatures also provide non-repudiation. Security
applications and protocols typically implement one or more of these security
mechanisms. One such application is the Internet Protocol Security (IPSec)
standard.

The IPSec standard incorporates private-key and hash algorithms. In this
chapter a novel single-chip hardware IPSec cryptographic design is
presented, which comprises the generic Rijndael architecture described in
chapter 4 and a HMAC-SHA-I authentication algorithm design [77J. The
IPSec core supports the cryptographic requirements of the IP Authentication

99

www.manaraa.com

100 Chapter 5

Header (AH) and Encapsulation Security Payload (ESP) and any
combination of these two protocols. It is also capable of supporting any
application requiring authentication and/or encryption, such as Wireless
Local Area Networks (WLANs), the Secure Electronic Transaction (SET)
and Transport Layer Security (TSL) protocols, Virtual Private Networks
(VPNs) and firewalls.

The HMAC-SHA-l design incorporates a low area and high speed SHA-l
architecture. This efficient architecture, which utilises a shift register design
approach, is described in the chapter. Anticipating the increase in security
which will be afforded by the AES, the NIST proposed an expansion of their
hash standard, SHA-l, to include the SHA-256, SHA-384 and SHA-5l2
algorithms, which produce 256, 384 and 5l2-bit message digests
respectively. The first hardware implementation of the SHA-384 and SHA-
512 hash algorithms to be reported in the literature is also outlined [78].

Performance evaluations for the IPSec cryptographic core and SHA-
384/SHA-5l2 design are presented. The integration of the IPSec core into
other security applications and protocols is discussed. Finally, the chapter
finishes with some important conclusions.

5.2. Internet Protocol Security (IPSec)

Internet protocols were first developed in the mid-1970s when the
Defence Advanced Research Projects Agency (DARPA) became interested
in establishing a packet-switched network that would facilitate
communication between dissimilar computer systems [79]. DARPA funded
research work by Stanford University and Bolt, Beranek and Newman
(BBN), which resulted in the development of the Internet Protocol (IP) suite.
The current version of this protocol is IP version 4 (IPv4). However, a newer
version, IPv6, exists and is being utilised in limited portions of the Internet.
IPv6 was designed to accommodate the increase in the Internet's popularity.
Its address size is 128-bits whereas the IPv4 address size is 32-bits in length.

IPSec is an extension to the IP suite and is a globalised solution to the
problem of Internet security. It is applied to the Network layer - layer 3 of
the 7-1ayer Open Systems Interconnect (OSI) reference model. More
specifically it operates on the Internet layer of the TCP/IP protocol suite and
thus, provides inherent security to any application. Rather than requiring
each email program or Web browser to implement its own security
mechanism, IPSec involves a change to the underlying facilities that are used
by each application [80] and also allows security to be applied to network
traffic without involving end users. IPSec is described in several Request For
Comments (RFCs) [81, 82, 83]. The protocol is designed to provide support
for confidentiality, authentication and integrity. It also offers:

www.manaraa.com

Hash Algorithms & Security Applications 101

Access Control - restricts access of data to strictly authorised entities
Replay Protection - protects against replay attacks, in which a packet is

extracted from the data stream and reused later by an
attacker

The IPSec protocols include instructions for integration in both IPv4 and
IPv6. However, in this chapter the protocols are discussed only in respect to
IPv6. The two security mechanisms of IPSec are the Authentication Header
(AH), which provides data origin authentication and connectionless
integrity, and the Encapsulating Security Payload (ESP), which provides
connectionless data confidentiality services [84]. Both the AH and ESP are
used in accordance with a Security Association (SA). The SA is the
agreement between two or more bodies on the security services they wish to
utilise, such as which authentication algorithm, mode and keys to use in the
AH mechanism and which encryption algorithm, mode and keys to use in the
ESP mechanism. Therefore, an IP data packet can only be authenticated
and/or decrypted if the receiver can correlate it to the appropriate SA.

IPSec supports two methods of operation, tunnel mode and transport
mode. In transport mode, only the upper-layer protocol data Segment of the
IP packet, for example, a Transmission Control Protocol (TCP) segment, is
authenticated or encrypted and it is typically used for end-to-end protection
of data packets between two hosts. In tunnel mode the entire IP packet is
authenticated or encrypted. The result is then transmitted within another IP
packet which contains a new outer header. In effect, the entire original
packet travels through a 'tunnel' from one point of an IP network to another.
Tunnel mode can be used between firewalls to create a Virtual Private
Network (VPN) [85].

Efficient key management is also an important aspect of IPSec. The
default automated key management protocol chosen for employment with
IPSec is the Internet Key Exchange (IKE) [86]. IKE is discussed in chapter
6.

5.2.1. IP Authentication Header

The authentication header provides support for data integrity and
authentication of the IP packets [9]. The AH, illustrated in Figure 5-1, is
described in Table 5-1 below.

www.manaraa.com

102 Chapter 5

Table 5-1. Description of Authentication Header

Field Length Function
Next Header 8-bit Identifies the type of header that follows the AH

header, e.g. ESP header or TCP header
Payload Length 8-bit Specifies the length of the AH header in 32-bit

words, minus 2
Reserved 16-bit Set to 0, but reserved for future use
Security Parameter 32-bit Identifies the SA
Index (SPI)
Sequence Number 32-bit Counter value which indicates number of

messages sent from sender to receiver using
current SA - allows replay protection

Authentication variable Contains the Message Authentication Code
Data (MAC) for the data

Next Header I Payload Length I Reserved (Set to 0) T
Security Parameter Index (SPI) s ~eader

Sequence Number - Replay Protection ~
Authentication Data

(variable number
of 32-bit words)

Figure 5-1. Outline of Authentication Header

The scope of authentication and the location of the AH varies between
transport and tunnel mode. Figure 5-2 outlines a typical IPv6 header. Figure
5-3 shows the location of the authentication header and the authenticated
fields for transport mode. The Message Authentication Code (MAC) is
calculated over all the IP header fields which remain unaffected during
transit or which are predictable in value by the receiving end-point. Header
fields that will change in transit are set to zero for the MAC calculation, for
example, the authentication data field. In transport mode, the AH is placed
after the original IP header and associated extension headers and before the
IP payload data, i.e. the TCP and packet data. The destination extension
header can optionally be placed before or after the AH header. In tunnel
mode the entire original IP packet and the new IP header and extension

www.manaraa.com

Hash Algorithms & Security Applications 103

fields are authenticated except for those fields which change during transit.
The AH header in tunnel mode is located between the new and original IP
headers as illustrated in Figure 5-4.

IP Extension Packet
Header Headers Tep Data

Figure 5-2. Typical IPv6 Header

Original Extension Headers Destination Packet AH TCP IP Header hop-by-hop, destination, Header Data routlng,fragment

Figure 5-3. AH Location in Transport Mode

1 1----------- Authenticated Fields -----------1.~1

New New Original Original
Packet

IP Header Extension AH IP Header Extension TCP
Headers Headers Data

Figure 5-4. AH Location in Tunnel Mode

5.2.2. IP Encapsulating Security Payload

The IP AH does not transform the payload data of an IP packet and thus it
remains unprotected to attacks such as eavesdropping. The Encapsulating
Security Payload (ESP) mechanism offers data confidentiality, including
message and limited traffic flow confidentiality [9]. ESP can also provide
authentication if required by the user. The ESP header is outlined in Figure
5-5 and described in Table 5-2.

Similar to the AlI, the location of the ESP header and scope of encryption
and authentication varies for ESP in transport and tunnel mode. In transport
mode, the payload data, padding, pad length and next header fields are
encrypted. The ESP header is positioned after either the IP header or an AH
header and ahead of the transport-layer header, as outlined in Figure 5-6.
The padding, pad length and next header fields are collectively known as the
ESP trailer, which is located after the IP data packet.

www.manaraa.com

104 Chapter 5

Security Parameter Index (SPI) If
Sequence Number - Replay Protection

hider

Payload Data i
(variable) TCP+

pkt dat a

!
I Padding (0 to 255 bytes) t

trailer

I Pad Length I Next Header +
Authentication Data

(optional)

Figure 5-5. Outline of Encapsulating Security Payload

Table 5-2. Description of Encapsulating Security Payload

Field Length Function

Security Parameter 32-bit Identifies the SA
Index (SPI)
Sequence Number 32-bit Counter value which indicates number of messages

sent from sender to receiver using current SA -
allows replay protection

Payload Data variable Refers to the data to be encrypted by the encryption
algorithm specified by the SA. The data is a
transport-level segment in transport mode and an
entire IP packet in tunnel mode

Padding 0-255 Padding is used to ensure that the length of the data
bytes to be encrypted (payload data + pad length + next

header) is an integral multiple of the encryption
algorithm's input block size. Padding can also be
used to disguise the message's true length and thus
provide traffic flow confidentiality

Pad Length 8-bit Specifies the length of the padding field
Next Header 8-bit Identifies the type of header that follows the ESP

header, e.g. TCP header or Extension header in
IPv6

Authentication variable Optional field which contains the Message
Data Authentication Code (MAC) for the data

www.manaraa.com

Hash Algorithms & Security Applications 105

Also if authentication is incorporated, only the IP payload is authenticated
and is positioned after the ESP trailer. In tunnel mode the entire original IP
packet is encrypted and optionally authenticated. The ESP header, in tunnel
mode, is located between the new and original IP headers as illustrated in
Figure 5-7.

Extension Headers
hop-by-hop. destination,

routlng,fragment

~---- Authenticated Fields ----~

Figure 5-6. ESP Location in Transport Mode

New
Extension
Headers

~------ Authenticated Fields ------.;

Figure 5-7. ESP Location in Tunnel Mode

5.3. IPSec Authentication Algorithms

The authentication algorithm employed by AH or ESP is indicated by the
SA. The two authentication algorithms specified in the IP Authentication
Header and Encapsulating Security Payload RFCs are the HMAC-MD5 and
HMAC-SHA-l algorithms. The SHA-l and HMAC algorithms are described
in sections 5.3.1 and 5.3.2 respectively.

5.3.1. SHA-l

The Secure Hash Algorithm (SHA-l) operates on a message in 512-bit
blocks and produces a 160-bit message digest. The maximum message
length acceptable is 264 bits. SHA-l is performed as follows:

Pad the message to length ;; 448 mod 512 - padding is carried out by
appending a single I-bit followed by the required number ofO-bits
Append the message length as a 64-bit binary number
Parse message into N x 512-bit blocks of data
Initialise 5 x 32-bit words, A, B, C, D and E such that,

www.manaraa.com

106 Chapter 5

A 67452301
B efcdab89
C 98badcfe
D 10325476
E c3d2e1fO

- Perfonn 80 iterations of the SHA-l processing function, outlined in
Figure 5-8, on the first 512-bit data block

- The resulting 160-bit output initialises A, B, C, D and E for the
processing function of the next data block

(5.1)

- After all N data blocks have been processed, the final output fonns the
160-bit message digest

In the SHA-l processing function, KI are 32-bit constants where,

Kt

Kt

Kt

Kt

5a827999 o ~ t ~ 19
6edgeba1 20 ~ t ~ 39
8f1bbcdc 40 ~ t ~ 59
ca62c1d6 60 ~ t ~ 79

w,

32
T = ROTLEFT_5 (A) + F,(B,C,D) + E + K, + W, H--+H+-.

E=D
D=C 160

(5.2)

HashpJ
C = ROTLEFT_JO (B) H---.rt+-+~ Hash(l+1J

B =A
A=T

Figure 5-8. SHA-J Processing Function

The message schedule, Wr, consists of 32-bit values such that,

O~t~15

16~ t ~ 79
(5.3)

www.manaraa.com

Hash Algorithms & Security Applications 107

where ROTLEFT-n (word) is a circular rotation of a word by n positions to the
left.

The logical function used is,

I (x AND y) OR (x AND z)

xEDyEDz
Ft (x, y, z) = (x AND y) OR (x AND z) OR (y AND z)

xEDyEDz

5.3.2. HMAC

o ~ t ~ 19

20~ t ~ 39

40 ~ t ~ 59

60 ~ t ~ 79

(5.4)

The Keyed-Hash Message Authentication Code (HMAC) [87]
authenticates both the source of a message and its integrity. The sender of a
message uses the HMAC algorithm, which incorporates a secret key, to
condense the message and produce a specific code. The message along with
this code is sent to the recipient, who uses the same secret key and HMAC
algorithm to recalculate the code. If the two codes are the same, the recipient
is guaranteed that the message and its author are genuine.

The HMAC of a block of data can be calculated by performing the
following equation:

HMAC(data) = H[ko EB opad II H[(ko ED ipad) II data]]

where,
H represents the Hash function, i.e. SHA-I
ko is the input key padded with zeros
ipad = Ox36 (hexadecimal) x 64
opad = Ox5a (hexadecimal) x 64

(5.5)

A 20-byte length key is mandated for HMAC-SHA-I [88]. Since the
HMAC-SHA-l algorithm requires a key length of 64 bytes, the input key
must be appended with 44 zero bytes. The HMAC of 160-bits is truncated to
96-bits for use with AH or ESP.

5.4. IPSec Cryptographic Processor Design

Many systems require both authentication and encryption protection. The
obvious method of achieving this is to employ the ESP protocol with
authentication since an individual SA can only implement either the AH or
ESP protocols. Multiple SAs, however, can be utilised in order to implement
both protocols. In fact, the RFC describing the IPSec security architecture

www.manaraa.com

108 Chapter 5

includes a number of cases outlining combinations of SAs which must be
supported by compliant IPSec hosts and security gateways. The cases
mentioned employ both authentication and encryption by combining the AH
and ESP protocols. Hence, the aim of the research outlined in this chapter
was to achieve a single-chip design capable of performing the cryptographic
requirements of both the AH and ESP mechanisms.

The encryption and authentication algorithms chosen for the IPSec design
are Rijndael and HMAC-SHA-l respectively. The DES algorithm operating
in CBC mode, is currently the only algorithm mandated for the IPSec ESP
header, although Triple DES is also commonly used. However, as described
in chapter I, the Rijndael algorithm replaced DES as the FIPS encryption
standard in November 2001. This modification has yet to be reflected in the
IPSec standards but it is expected that the IPSec working group will declare
Rijndael as a mandatory encryption algorithm for the ESP protocol [80, 89,
90]. Predicting that this change will take place in the near future, the design
presented here utilises the new Rijndael algorithm in implementing IPSec.
The encryption core used in the IPSec design is the generic Rijndael
architecture described in chapter 4. From this encryption architecture, cores
can be generated for all three key lengths outlined in the Rijndael algorithm
specification. Each design performs encryption and on-the-fly decryption
and supports ECB, OFB, CBC and CFB modes of operation.

The· two authentication algorithms specified for use in AH and ESP are
HMAC-SHA-I and HMAC-MD5. The HMAC-SHA-l algorithm is chosen
for implementation since the SHA-l message digest is 32-bits longer than
the MD5 digest and is considered stronger against brute force attacks [80, 9,
29]. In 1996 the MD5 algorithm was shown to be vulnerable to specific
collision search attacks [91].

5.4.1. SHA-l Design

The SHA,.l design consists of four main components - a padding block,
message scheduler, compression block and controller - as illustrated in
Figure 5-9.

The padding block is responsible for generating the padded 512-bit blocks
required by the algorithm from the input data. The data is loaded in 32-bit
blocks. A counter, with the aid of the LAST_BLK and LAST_DATA_CNT
signals, is used to calculate the length of the entire message. If the message
length is 448 bits an extra iteration of the compression block is performed in
which the input comprises all zeros concatenated with a binary
representation of the message length.

www.manaraa.com

Hash Algorithms & Security Applications

DATAIN

START
lAST_BlK

LAST
DATA_CNT

-
-
-
-

PADDED
Padding DATA Message

W

Block Scheduler

~ ~ ~
~ Mess Length L Counter

Controller
~ MESS

lENGTH

Figure 5-9. Outline ofSHA-1 Algorithm Design

109

Compression
Block

SHA_HASH

HASH_RDY

The message scheduler is implemented using a 16-stage shift register
design. The use of shift registers in the implementation is motivated by the
diagrammatical representation of hash algorithms provided by the NIST
[92]. Figure 5-10 outlines the message scheduler design.

Figure 5-/0. SHA-J Message Scheduler Shift Register Design

For 16 clock cycles the registers are loaded with the 32-bit padded
message blocks. On the next clock cycle the value of register 15 is replaced
with the value resulting from equation (5.3) outlined in section 5.3.1. Since
the output, W" is taken from between registers 14 and 15, and not from the
output of register 0, an initial delay of 16 clock cycles is avoided.

The shift register methodology can also be utilised in the compression
block design which implements the SHA-l processing function, as depicted
in Figure 5-11. The design uses 5 registers to store the continually updating
values of A, B, C, D and E. The values of registers B, C and D are passed
tlirough one of four different functions every 20 cycles as outlined in
equation (5.4).

The controller is responsible for controlling the flow of data throughout
the overall design. It updates the values of A, B, C, D and E for each new
compression iteration and carries out the addition between the Hash(i)
values and the updated 32-bit words A to E, to form the new Hash(i + 1).
When the final compression is performed, the results of this addition are
concatenated to form the 160-bit output hash.

www.manaraa.com

110 Chapter 5

T

"----+t-l+------t+-l+-------H-++-wt + Kt

Figure 5-11. SHA-J Compression Block Design

The MD5 and SHA-l hash algorithms have many similar characteristics
and therefore, this hardware design could easily be extended to incorporate
MD5 functionality.

5.4.2. HMAC-SHA-l Design

The HMAC-SHA-l algorithm design incorporates the SHA-l component
as shown in Figure 5-12. The key-padding block extends the mandatory 20-
byte input key to a 64-byte key as required by the HMAC algorithm. The
padded key is then XORed with the constant opad and ipad 64-byte values.
The concatenate blocks serve to append the XOR results, in the first instance
with the DATAIN and in the second instance with the resulting 160-bit hash,
to form the input to the SHA-l hash function. Therefore, the HMAC
algorithm utilises two passes of the underlying hash function, where the
inputs are the (ko EB ipad) 512-bit block and the input data to achieve the first
hash output. The (ko EB opad) result and the first hash output are the inputs
which achieve the final hash or HMAC output. In order to maintain a low
area design, and since the first hash output forms a part of the second hash
function input, only one SHA-l component is used with a multiplexor to
select between the two inputs. The HMAC controller manages the flow of
data throughout the circuit. Since it is necessary to wait until the hash
function is performed twice, START and WAIT signals are used in order to
control the input data. After the second SHA-l iteration, the resulting 160-bit
hash is truncated to obtain the final 96-bit HMAC output.

Alternatively, if the input key is not changed frequently, a more efficient
implementation is possible. The intermediate results obtained by passing the
(ko EB ipad) and (ko EB opad) blocks through the hash function can be pre
computed and used to initialise SHA-l's A, B, C, D and E values for the
data input and first hash output blocks respectively. This will significantly
reduce the computational time of producing the HMAC of a message. The
design is especially efficient if the messages for which the MAC is

www.manaraa.com

Hash Algorithms & Security Applications 111

computed are short [9]. The intermediate results can be stored using two
160-bit registers. However, this will restrict the design to authentication
utilising just one key. If the key is altered, the design will need to be re
synthesised. A better approach is to input the intermediate results as an
initialisation value, IVKEY, for the SHA -1 function. The efficient
implementation of the HMAC-SHA-l algorithm consists of the controller
and SHA-l component as depicted in Figure 5-13.

NEW lOAD lAST lAST
DATA DATA BlK DATA_CNT START

HMAC
Controller

DATAIN ---.I Concatenate 1---i~1

KEY Key
Padding

SHA·1
core

Figure 5-12. Outline ofHMAC-SHA-1 Algorithm Design

5.4.3. Overall IPSec Design

WAIT

HMAC_RDY

HMACOUT

HASH
ROY

SHA
HASH

An outline of the IPSec cryptographic core is given in Figure 5-14. The
core comprises the Rijndael design and can include either of the two
HMAC-SHA-l designs. The ordinary HMAC core can be employed when
frequent key changes are required whereas the more efficient HMAC design
is suitable when the same key is used in anyone data transfer session. The
Rijndael and HMAC-SHA-l designs are low-area designs to allow for the
implementation of both on a single-chip. Hence, the overall IPSec
cryptographic core can perform encryption and/or authentication. The
scenario whereby authentication is performed on the encrypted data, the
ciphertext, is also supported. This occurs when operating the ESP protocol

www.manaraa.com

112 Chapter 5

with authentication. If the A_ESP _OPTION signal is high, ciphertext can be
input into the HMAC-SHA-l component.

DATAIN

NEW lOAD lAST lAST
IVKEY DATA DATA BlK DATA_CNT START

A

E

LST_DATA

LST_DATA
eNT

SHA·1
core

HASH
RDY

SHA
HASH

WAIT

HMAC_RDY

HMACOUT

Figure 5-/3. Outline of Efficient HMAC-SHA-J Algorithm Design

5.5. Performance Results

The IPSec cryptographic design described was simulated using Modelsim
XE and synthesised using Synplify Pro V6.0 and Xilinx Foundation Series
3.1i software. The SHA-l, HMAC-SHA-l and Rijndael algorithm designs
were individually verified using the test vectors provided in the FIPS 180-1
Secure Hash Standard [93], FIPS 198 HMAC Standard [94] and the Rijndael
specification [56] respectively. The overall IPSec design was implemented
on a single XCVI000E Xilinx Virtex-E device. 310 of 404 lOBs, 6143 CLB
slices and 20 BRAMs are utilised. The BRAMs are required by the Rijndael
design. The IPSec design is capable of performing 128-bit encryption and
decryption at a rate of 310 Mhits/sec (clock speed - 24.2 MHz) as described
in §4.4.5.

www.manaraa.com

Hash Algorithms & Security Applications

E_DATAIN

E_LOAD_DATA

E_LOAD_KEY

E_LOAD_IV

E_IV

E_KEY

E_ENC_DEC

E_CFBENC_DEC

E_MODE

A_DATAIN

A_ESP _OPTION

A_LOAD_DATA

A_NEWDATA

A_START

A_LAST_BLK

A_LAST_DATA_CNT

A_KEY

-

3Z

3Z Rijndael

Z

~
HMAC-SHA·1

B

3Z

I
3Z ,

96

E_READY

E_DATAOUT

A_WAIT

A_HMAC_RDY

A_HMACOUT

Figure 5-14. Outline of IPSec Cryptographic Core

113

It is difficult to obtain a true data throughput figure for the HMAC-SHA-l
element of the design since it creates a hash of an entire message of size
< 264. Also, the SHA-l design processing time is 82 clock-cycles, but if the
final 512-bit padded block being processed contains >448 bits of the actual
message, an extra iteration of 82 clock cycles is required. However,
maximum and minimum data-rate figures are attainable. If the extra iteration
is required, the HMAC-SHA-l processing time is 410 clock cycles, i.e. five
512-bit blocks of data are passed through the SHA-l function. The HMAC
design can run at a clock speed of 58 MHz and therefore, will perform at a
minimum data rate of 72 Mbits/sec. The typical HMAC-SHA-l processing
time is 328 clock cycles and hence the maximum data throughput is 90
Mbits/sec. In the efficient HMAC design, the maximum throughput is 199
Mbits/sec - only two passes of the hash function are required since the
XORed key hash results are pre-computed, which implies a processing time
of 163 clock cycles. The minimum data rate with which the efficient design
can run is 133 Mbits/sec.

If both encryption and authentication are being performed at the same
time, two separate clocks can be utilised with a FIFO to control the flow of
data. However, if only one clock is used, the HMAC-SHA-l design runs at

www.manaraa.com

114 Chapter 5

24.2 MHz and hence a data rate of 30 to 37.8 Mbits/sec. However, the
efficient design can operate at 50 to 76 Mbits/sec.

Thus, both architectures are more than sufficient in providing security for
56 Kbitlsec (phone line modems), 1.54 Mbitlsec (Tl wireless), and 10
Mbit/sec (Ethernet) networks. The efficient HMAC design can also provide
the security requirements of 100 Mbitlsec (Ethernet) networks. No other
IPSec cryptographic hardware implementations comprising the Rijndael and
HMAC-SHA-l algorithms have been reported in the literature.

The HMAC-SHA-1 component incorporates a low area, yet very efficient
SHA-l algorithm implementation. The SHA-1 stand-alone architecture
utilises just 1125 CLB slices and operates at 393 Mbits/sec with a clock rate
of 63 MHz. For comparison purposes a number of commercial SHA-1
FPGA implementations are outlined in Table 5-3. The SHA-l design
described in this chapter is the smallest of these designs and is also the most
efficient. The use of the 16-stage shift register in designing the message
schedule and compression components leads to this highly efficient, compact
implementation.

The IPSec cryptographic hardware design presented can also compliment
the IP Payload Compression Protocol (IPComp) [95] in speeding up both the
encryption and authentication involved in the AH and ESP protocols.
IPComp employs data compression algorithms to reduce the IP packet
payload size and hence packet transmission time. Therefore, since the actual
amount of data being encrypted or authenticated is reduced, the execution
times of the encryption and authentication algorithms will also be decreased
[96].

Table 5-3. Comparison ofSHA-l algorithm FPGA implementations

Manufacturer Device CLB Data Rate Efficiency
Used Slices Mhits/sec Slices/Data Rate

He1ion [97] VirtexE-8 1550 512 0.33
Alma [98] VirtexE-8 1310 385 0.29
McLoone, McCanny [77] VirtexE-8 1125 393 0.35

www.manaraa.com

Hash Algorithms & Security Applications

5.6. IPSec Cryptographic Processor Use in Other
Applications

115

The IPSec design is also capable of supporting any application requiring
both authentication and encryption. For example, it can be utilised to provide
the security needs of Wireless LANs (WLANs), the Secure Electronic
Transaction (SET) protocol, the Transport Layer Security (TLS) and the
Wireless Transport Layer Security (WTLS) protocols.

The SET protocol is a mechanism for providing secure credit card
payments over the Internet [99]. It was developed by Mastercard and Visa
(with assistance from IDM, Microsoft, VeriSign and other companies) and
published in 1996. The service is tailored to the specific needs of a particular
application and thus is an application layer security protocol. SET uses DES
encryption to provide confidentiality of information. For example, credit
card numbers are issued to the bank but cannot be viewed by the retailer.
Similarly to IPSec,· it is inevitable that Rijndael will replace DES as the
symmetric encryption algorithm in the SET protocol. The HMAC-SHA-l
algorithm is used in SET to authenticate the payment information, such as
personal details and payment instructions, sent by a customer to the retailer.

The Secure Socket Layer (SSL) protocol was developed by Netscape to
provide encrypted and authenticated communication between clients and
servers. TLS is a standard proposed by the Internet Engineering Task Force
(IETF) in an effort to produce an Internet standard version of SSL [9] and
thus it is very similar to SSL version 3.0. It is a transport layer security
protocol and runs above TCP/IP and below higher-level protocols such as
the HyperText Transport Protocol (HTTP). The TLS protocol allows the
authentication of a server and a client to each other and allows both
machines to establish a secure encrypted connection. It includes two sub
protocols - the TLS record protocol and the TLS handshake protocol [100].
The handshake protocol negotiates the security parameters for the record
layer and the key exchange. The record protocol provides connection
security. This involves fragmentation of the upper-layer message.
Compression is optionally applied to the fragmented blocks. The MAC is
computed over the compressed data as follows:

HMAC (data) = H[ko E9 opad II H[(ko E9 ipad) II seCLnum II
TLScompressed.type II TLScompressed.version II
TLScompressed.length II TLScompressed.fragment]] (5.6)

where,
H represents the Hash function, i.e. SHA-l
ko is the input key padded with zeros

www.manaraa.com

116

ipad = Ox36 (hexadecimal) x 64
opad = Ox5a (hexadecimal) x 64
seq_num is the sequence number for the data block
TLScompressed.type is the higher-level protocol type

Chapter 5

TLScompressed. version refers to the protocol version
TLScompressed.length is the length of the compressed fragment
TLScompressedfragment represents the compressed/plaintext fragment

The compressed message and the HMAC result are encrypted using a
symmetric encryption algorithm. A range of symmetric algorithms is
supported by TLS such as DES, IDEA and Triple DES. In January 2002, an
Internet draft was published by the IETF to incorporate the AES algorithm
into TLS. The draft indicated that since the AES has withstood extensive
cryptanalysis and proven to be efficient, it is in fact a very desirable choice
of symmetric algorithm [101]. The AES algorithm in CBC mode is required.

The Wireless Transport Layer Security (WTLS) protocol was developed
by the Wireless Application Protocol (W AP) forum in 2001 to provide
security for applications that operated over wireless networks [102]. It is
based on the TLS protocol and thus authentication and encryption are
performed similarly to that previously described for TLS.

In recent years, there has been a tremendous growth in the wireless
communications market. The IEEE 802.11 protocol, which specifies how to
achieve wireless connectivity for fixed, portable and moving stations in a
local area, is the principal standard for WLANs. It introduced the Wired
Equivalent Privacy eWEP) protocol to protect wireless communication from
eavesdropping and other attacks. However, WEP has been shown to be
unsatisfactory [103, 104, 105]. WEP uses a cyclic redundancy checksum
(CRC-32) to produce an integrity checksum for authentication and the RC4
algorithm for encryption. Borisov et al. [104] demonstrated the importance
of using a cryptographic secure MAC such as HMAC-SHA-1 to provide
authentication rather than using the insecure CRC checksum. Also,
recognising the insecurities of WEP, the IEEE Task Group E has approved a
draft Enhanced Security Network (ESN) protocol which uses AES over the
weaker RC4 algorithm. It has also been suggested that IPSec could be
employed to provide the security requirements for the IEEE 802.11 standard
[105]. Indeed, some companies have already begun to utilise IPSec in
wireless LAN systems [106].

The IPSec protocol itself is used to provide security in VPNs and
firewalls. Therefore, the novel IPSec cryptographic design presented in this
chapter, which comprises the Rijndael algorithm and HMAC-SHA-l
algorithm, can be used to provide numerous applications and protocols with
strong, efficient authentication and encryption.

www.manaraa.com

Hash Algorithms & Security Applications 117

5.7. SHA-384/SHA-512 Processor

In anticipation of the expected increase in use of the AES standard, the
NIST proposed the addition of three new hash algorithms to the Secure Hash
Standard - SHA-256, SHA-384 and SHA-512 [107]. In this section SHA-
384 and SHA-512 are discussed.

5.7.1. SHA-512

SHA-512 operates on a message in 1024-bit blocks and produces a 512-
bit message digest. The maximum message length acceptable by the
algorithm is 2128 bits. Similar to SHA-I, the SHA-512 algorithm consists of
message padding and parsing, a message schedule and a processing function
and it is carried out as follows:
- Pad the message to length == 896 mod 1024
- Append the message length as a 128-bit binary number
- Parse message into N x 1024-bit blocks of data
- Initialise 8 x 64-bit words, A, B, C, D, E, F, G and H such that,

A 6a0ge667 f3bcc908
B = bb67ae85 84caa73b
C 3c6ef372 fe94f82b
D a54ff53a 5fld36fl
E 510e527f ade682dl
F 9b05688c 2b3e6clf
G If83d9ab fb41bd6b
H 5beOcd19 137e2179 (5.7)

- Perform 80 iterations of the SHA-512 processing function, outlined in
Figure 5-15, on the first 1024-bit data block

- The resulting 512-bit output initialises A, B, C, D, E, F, G and H for the
processing function of the next data block

- After all N data blocks have been processed, the final output forms the
512-bit message digest

In the SHA-512 processing function, K t are a sequence of eighty 64-bit
constants as outlined in Appendix E.

The message schedule, W;, consists of 64-bit values such that,

{
Messaget 0:::; t :::; 15

- a}12(Wt_2)+~_7 +(}'g12(~_15)+~_16) 16:::;t:::;79
(5.8)

www.manaraa.com

118 Chapter 5

KI WI EB -Addition is mod 264

64 ~S12
~ = H + ~/E) + Ch(E,F,G) + K, + W.

B ~512
T, = ~o (A) + Maj(A,B,C)

C H=G

Hash(/)
0

E
Hash(I"!

G=F

F=E

E=D+~

F D=C

G
C=B

B=A
H A=~ +T,

Figure 5-15. SHA-512 Processing Function

The logical functions used in the message schedule and processing
function are,

Ch(x,y,z) = (xANDy)tB(iANDz) (5.9)

Maj(x,y,z) (x AND y) EB (x AND z) EB (y AND z) (5.10)

(5.13)

at12 = ROTRIGHT_19 (x) EB ROTRIGHT-61 (x) EB SHFRIGHT-6 (x) (5.14)

where ROT RlGHT-n (word) is a circular rotation of a word by n positions to the
right and SHF RlGHT-n (word) is the right shifting of a word by n positions.

www.manaraa.com

Hash Algorithms & Security Applications 119

5.7.2. SHA-3S4

The SHA-384 hash algorithm is almost identical to the SHA-512
algorithm. It also operates on 1024-bit blocks and the maximum message
length acceptable is i 28 bits. The algorithms differ in initialisation values
and in the message digest length. In SHA-384 the 8 x 64-bit words, A, B, C,
D, E, F, G and H are initialised such that,

A cbbb9d5d c105ged8
B = 629a292a 367cd507
C 9159015a 3070dd17
D 152fecd8 f70e5939
E 67332667 ffcOOb31
F 8eb44a87 68581511
G dbOc2eOd 64f98fa7
H 47b5481d befa4fa4 (5.15)

The SHA-384 algorithm produces a 384-bit message digest which is
formed by truncating the left-most 384 bits of the 512-bit hash output.

5.7.3. SHA-3S4/SHA-512 Design

Since the SHA-384 and SHA-512 algorithms are very similar they can
both easily be implemented on a single-chip. Similar to SHA-l, the design
includes a padding block, message scheduler, compression block and
controller.

The controller controls the flow of data in the design. The padding block
generates the padded 1024-bit data blocks required by the message
scheduler. The entire message length is calculated as in the SHA-l design
using a counter and LAST BLK and LST_DATA_CNT signals.

The shift register design approach is employed to implement the SHA-
384/512 message scheduler and compression blocks. A 16-stage shift
register architecture is used in the message scheduler design as shown in
Figure 5-16.

The registers are loaded with the 64-bit padded message blocks over 16
clock cycles. Register 15 is then replaced with the result of equation (5.8) on
the next clock cycle. This process continues for 80 clock cycles. Similar to
the SHA-l design, an initial 16 clock cycle delay is avoided by taking the
output, WI> from the output of register 15. The compression block
architecture is depicted in Figure 5-17. Eight registers are used in the design
to hold the values of A to H as they are updated on each cycle.

www.manaraa.com

120 Chapter 5

Figure 5-16. SHA-384/SHA-S12 Message Scheduler Design

The functions Ch(E, F, G), Maj(A, B, C), Io(A) and L(E) are as outlined
in equations (5.9), (5.10), (5.11) and (5.12) respectively. The eighty 64-bit
constants, K t , are stored using a LUT. The LUT was implemented using two
dual-port BRAMs since the target technology was a Virtex-E FPGA device.
When the input data and write enable signals are set to zero, a BRAM can be
used as a ROM or LUT. A counter, which counts to 80, is used to address
the BRAM and the four 16-bit outputs are concatenated to form each 64-bit
constant as it is required by the compression block. This BRAM
implementation is outlined in Figure 5-18.

~-rH+----1+~----------~~~~---+~-------H~Wt+Kt

Figure 5-17. SHA-384/SHA-S12 Compression Block Design

After 80 cycles the values in registers A to H are added to the initial hash
values to obtain new hash values. These form the values of A to H for the
next data block operation. When the final message block has been processed,
the hash value outputs are concatenated to produce the 512-bit message
digest.

To include SHA-384 capabilities, a multiplexor is added to select between
the SHA-384 and SHA-512 initial values. A second multiplexor is utilised at
the output to select between the 512-bit and the shortened 384-bit message
digests.

www.manaraa.com

Hash Algorithms & Security Applications

Count
(0 to 79)

AddrA ..
8"-

AddrB

8

iAddrA
8"-

AddrB
8

BRAM

p

BRAM

:J

DOA
16

c

DOB
16

~
DOA

16

c

DOB
16

Figure 5-18. Implementation of Constants, Kt, using BRAMs

5.7.4. Performance Results

121

Hardware implementations of the SHA-256 algorithm exist [108, 109].
However, the design presented here is the first SHA-384/SHA-512 algorithm
implementation. For implementation purposes the architecture described has
been implemented on a Xilinx Virtex-E XCV600E-8 device. It was verified
using the test vectors provided in the draft FIPS 180-2 standard [107]. The
design requires 2914 CLB slices, 2 BRAMs and 141 lOBs. It operates at a
clock speed of 38 MHz and thus has a throughput of 479 Mbits/sec. The shift
register design approach and the use of BRAMs to store the eighty constants
result in a compact and fast implementation. The message blocks are loaded
in 64-bit blocks. Also the 384-bit or 512-bit hash result is output in 64-bit
blocks. This leads to a lower lOB requirement and less routing and therefore
improves the overall speed of the design.

5.8. Conclusions

In this chapter, a novel IPSec cryptographic chip design incorporating the
Rijndael encryption algorithm and HMAC-SHA-I authentication algorithm
is presented. The design performs the encryption and authentication
requirements of the IP AH and ESP protocols. The mandatory-to-implement
IPSec encryption algorithm is the DES algorithm. However, it has recently
been replaced in the FIPS standard by the AES algorithm, Rijndael.
Therefore, it is reasonable to assume that it will also replace DES in the
IPSec set of standards. Only one of the two mandatory authentication
algorithms - the SHA-I algorithm - was chosen for implementation in the

www.manaraa.com

122 Chapter 5

IPSec design since it is the stronger of the algorithms with a longer message
digest. Also, it is believed that numerous algorithm options add to the
complexity of the standard and inadvertently cause it to be less secure [89].
However, an extension to the design to include the MDS algorithm can be
easily achieved since the two algorithms share many similar computations.

Physical security and higher speeds are typical reasons for
implementation on hardware devices such as FPGAs. The IPSec design is
implemented using a single Virtex-E FPGA device for illustrative purposes
of the possible speeds attainable. Encryption rates of 310 Mbits/sec and
authentication at speeds of 90 Mbits/sec are achieved. If the efficient
HMAC-SHA-l design is included in the IPSec processor, authentication at a
data-rate of 199 Mbits/sec is possible. However, the efficient design is only
suitable when the same key is used in a data transfer session.

Therefore, the IPSec design is suitable for use in telephone line modem,
Tl wireless and 10 Mbitlsec networks and if the efficient HMAC-SHA-l
design is utilised, the security requirements of 100 Mbitlsec networks can be
supported. Also, if implemented on ASIC CMOS technology or if used in
conjunction with the IPComp protocol, further improvements in overall
performance are possible.

The IPSec design is also capable of providing the security requirements of
many other applications and protocols. In particular, it can provide the
cryptographic needs of the application layer security protocol, SET, and the
transport layer protocols, TLS and WTLS. It can also provide security for
the IEEE 108.llb WLAN standard. The IPSec protocol can be used in
firewalls and is often considered the best VPN solution for IP environments
as it includes strong security measures in its standards set [110].

The HMAC-SHA-l design incorporates a highly efficient and compact
SHA-larchitecture. The shift register design methodology used in the
implementation of SHA-l's message scheduler and compression blocks
helps to achieve the low area 393 Mbit/sec design.

The first reported SHA-384/SHA-512 algorithm single-chip hardware
implementation is presented in the chapter. The design also employs shift
registers in the implementation of the message scheduler and compression
block. The message is input and the hash result is output in 64-bit blocks.
Two BRAMs are used to store the eighty constants required by the
compression block. This combined with the low lOB count and shift register
design, leads to a high speed and low area implementation with a data rate of
479 Mbits/sec. Indeed if applications require encryption capabilities and
authentication with longer message digests, the SHA-384/SHA-S12 core can
be integrated with the Rijndael design to achieve an efficient hardware
implementation.

www.manaraa.com

Hash Algorithms & Security Applications 123

Overall, this chapter describes two new highly efficient single-chip hash
algorithm implementations which provide different message digest lengths.
It also presents an IPSec cryptographic system, which utilises a Rijndael
architecture to provide encryption and a HMAC-SHA-l architecture for
authentication needs, and illustrates that these can readily be implemented
using a single FPGA device.

www.manaraa.com

Chapter 6

CONCLUDING SUMMARY AND FUTURE
WORK

6.1. Concluding Summary

This book has examined in detail hardware architectures of the DES and
Rijndael private key encryption algorithms. Numerous generic silicon
architectures of both algorithms have been presented and comparisons
provided with eXIstmg designs. Hash functions, which provide
authentication, have been investigated and cryptographic applications that
require both authentication and encryption were discussed. The mam
conclusions and contributions of each chapter are now summarised.

Chapter 1
The AES development effort, in which DES was replaced by the Rijndael

algorithm in 2001, was described. The DES algorithm's 56-bit key was
considered insufficient in providing adequate security for communication
applications. The Rijndael algorithm was selected as the replacement to DES
because it not only performed well in hardware and software
implementations, but it also had low memory requirements, making it
particularly suitable for area-restricted environments. In addition, it was easy
to defend against timing and power analysis attacks and provided adequate
security.

The advantages of implementing encryption algorithms in hardware and
in particular using FPGAs, were presented. In comparison to software
implementations, FPGA designs are naturally 10 to 100 times faster [111],
can support parallel operations and provide additional physical security.

125

www.manaraa.com

126 Chapter 6

Although ASICs offer higher performance and are cheaper in high
volumes, FPGAs have lower NRE costs, less fabrication delays and support
in-circuit reprogrammability. Thus, FPGAs provide a much more efficient
platform for cryptographic implementation than software devices and are
rapidly becoming a very feasible alternative to ASICs.

Chapter 2
The DES symmetric key encryption algorithm, which has been in

existence for over 20 years, was described in detail. DES is still required in
many applications for backward compatibility purposes and will remain as a
benchmark for newly developed algorithms in the future.

A new generic architecture has been described, from which DES designs
can be created for use in numerous application requirements. These designs
can provide ECB and CBC modes of operation, single or Triple-DES
functionality, shifting and permutation key generation methods and a
varying number of pipeline stages. Technology-independent, Virtex FPGA
or Virtex-II FPGA implementation of the DES S-Boxes is also supported.

In addition, designs of specific speed and area configurations can be
generated from the generic DES architecture by altering the number of
pipeline stages. DES cores with 1, 2, 4, 8 and 16 pipeline stages have been
compared and it has been shown that a fully pipelined, 16-stage design is the
most efficient. The fully pipelined design implemented on a Virtex-E
XCV300E device achieves a data-rate of 7.8 Gbits/sec. This is one of the
fastest single-chip FPGA complete DES algorithm designs reported to date.

It has also been shown that the shifting DES key generation method is
more efficient than the permutation method and is most suitable in designs
requiring few key changes. The permutation method is more appropriate in
designs involving frequent key changes as the shifting method incurs an
initial latency on the input of a key during decryption.

A novel key scheduling approach has been presented that can be utilised
in pipelined implementations of private-key encryption algorithms. DES is
utilised to illustrate the key scheduling approach. The permutation key
generation method is used to create the sub-keys, which are then delayed by
an array of registers until they are required by each DES round. Therefore,
the technique allows the loading of different keys every clock cycle.

Chapter 3
A new generic architecture has been described, which generates

encryption-only Rijndael designs to support each of the three AES key
lengths. An implementation of the 128-bit key Rijndael core operates at a
rate of 7 Gbits/sec on a Virtex-E XCV812E device. At the time it was
developed, this was the first fully pipelined Rijndael silicon design to be

www.manaraa.com

Concluding Summary and Future Work 127

reported and it is among the fastest single-chip implementations reported to
date.

The research undertaken also showed that Xilinx Virtex-E devices are
particularly suitable for Rijndael algorithm implementation. The structure of
a Virtex-E FPGA consists of adjacent columns of CLBs and BRAMS, which
allow the algorithm components to be effectively placed resulting in very
high throughputs.

An iterative Rijndael key schedule design has been described, which
utilises only 2 BRAMs in implementation, regardless of the key length. The
highly efficient design can be employed in both iterative and pipelined
architectures.

A novel encryptor/decryptor Rijndael architecture has also been
developed. It achieves a throughput of 3.2 Gbits/sec and is one of the first
fully pipelined Rijndael FPGA implementations that can perform encryption
and decryption. Excess memory utilisation is avoided by the addition of two
initialising BRAMs - one is used to initialise all the BRAMs in the design
with the required encryption values while the other provides the necessary
decryption values.

Chapter 4
A LUT-based design methodology has been introduced whereby the

complex finite field mathematical operations involved in the Rijndael
algorithm are pre-computed for all possible inputs and the results stored in
LUTs. A LUT-based 128-bit key fully pipelined architecture implemented
on a Virtex-E XCV812E device boasts a pre-placement speed of 12
Gbits/sec. However, the technique incurs a high area penalty and as such, is
more suitable for iterative implementations. The LUT-based 128-bit key
iterative encryptor core runs at a throughput of 685 Mbits/sec, which is 1.6
times faster than the most competitive alternative implementation.

A hardware design for providing on-the-fly generation of the sub-keys
required during Rijndael decryption has been demonstrated. This uses the
final sub-key created during encryption as the inverse cipher key for
decryption. Then, utilising an inverse key expansion procedure the
decryption process sub-keys can be generated, as they are required by each
inverse Round.

A new generic architecture for implementing multi-functional iterative
Rijndael encryption cores in silicon has been presented. The generated cores
support each of the three AES key lengths and can perform encryption and
on-the-fly decryption in ECB, CBC, OFB and CFB modes of operation. The
128-bit key iterative core achieves a throughput of 310 Mbits/sec, which is
comparable to existing iterative designs in terms of speed and area. Whereas
previous Rijndael implementations have been one-off specific purpose

www.manaraa.com

128 Chapter 6

designs, the advantage of this architecture is that it has much greater on-chip
capability.

Chapter 5
A novel single-chip IPSec cryptographic design has been presented in this

chapter. This comprises the multi-functional Rijndael architecture described
in chapter 4 and a HMAC-SHA-I authentication algorithm circuit.
Currently, DES is the mandatory encryption algorithm in the IPSec standard,
although it is expected that it will be replaced by Rijndael in the near future.
There are two mandatory authentication algorithms, HMAC-SHA-l and
HMAC-MDS. However, SHA-l has been shown to be the stronger and more
secure of the two underlying hash functions and was therefore, selected for
this work.

The HMAC-SHA-l design authenticates information at a speed of 90
Mbits/sec. However, an efficient HMAC-SHA-l design has been described,
which achieves an authentication rate of 199 Mbits/sec. The efficient design
assumes that the same key is used throughout a data transfer session.

An efficient, low area SHA-l hardware design, which was utilised in the
HMAC-SHA-l architectures, has been presented. This is smaller than
similar existing commercial SHA-l implementations. The shift-register
design approach used in both the message schedule and compression
components leads to a highly compact implementation.

A shift register methodology was also used to develop one of the first
hardware implementations of the SHA-384 and SHA-S12 hash algorithms.
Two BRAMs are utilised to store the algorithms' eighty constants and thus, a
highly efficient, low area core with a data-rate of 479 Mbits/sec has been
achieved.

6.2. Future work

6.2.1. Key Distribution

Key distribution is an important aspect in the proVISIOn of a secure
cryptographic service. While symmetric key algorithms are typically used
for bulk data encryption, asymmetric key algorithms are used in key
distribution. It is vital to the security of a private key cryptosystem that the
secret key is not compromised. Many key-exchange protocols exist which
incorporate common public key algorithms such as RSA, EIGamal and
Diffie-Hellman. Future work could involve a study of key-exchange
protocols and an investigation into possible hardware implementations.

www.manaraa.com

Concluding Summary and Future Work 129

6.2.2. The Internet Key Exchange (IKE) Security Protocol

Internet Key Exchange (IKE) is a hybrid key management protocol,
which is typically used with the IPSec standard. It is employed to generate,
exchange and establish keys in a secure manner between two hosts of a
network. It implements the Oakley and Skeme key exchange protocols in
association with the Internet Security Association and Key Management
Protocol (ISAKMP). The negotiation involves two phases. In phase 1, an
ISAKMP security association (SA) is established, through which secure
communication can take place between the two hosts. In phase 2, IPSec SAs
are established - an inbound SA and an outbound SA are negotiated [80).

Oakley is a key exchange protocol based on the Diffie-Hellman
algorithm, which provides services such as identity protection and
authentication.

Skeme is a key exchange protocol that provides anonymity, repudiability
and quick key refreshment [86).

ISAKMP is an abstract framework for key management protocols. It
defines payload formats, provides specific protocol support and negotiates
SAs.

Cryptographic algorithms, which are mandatory for use with IKE include:
- DES operating in CBC mode - it is probable that Rijndael will replace

DES as the mandatory encryption algorithm
Diffie-Hellman

- HMAC-SHA-l
- HMAC-MD5

RSA
It is evident from the work presented in this book that highly efficient

hardware implementations of DES, Rijndael and HMAC-SHA-l are
possible. Indeed, since the MD5 algorithm is similar to SHA-l, it is
reasonable to assume that it too would perform well in hardware. The Diffie
Hellman and RSA public key algorithms contain complex modular
exponentiation operations, which are resource intensive. It has been found
that implementation of these operations in hardware greatly increases the
speed of key exchange and significantly reduces latency [112]. Hardware
implementations also support parallel processing, which would allow for the
maintenance of a high number of simultaneous SAs. For these reasons, it
would be interesting to develop a silicon architecture that would implement
the IKE and provide support for the mandatory cryptographic algorithms.

www.manaraa.com

130 Chapter 6

6.2.3. Elliptic Curve Cryptography (ECC)

Elliptic curves were independently proposed in 1985 by Koblitz and
Miller as viable public key cryptosystems [113]. Since their development,
they are fast becoming direct competition for the RSA algorithm. They offer
the highest strength-per-key-bit of any known public key system [114]. An
Eee key, although 10 times smaller than an RSA key, will provide
equivalent security. Hardware implementations of the RSA public key
algorithm typically achieve poor throughputs. Eee architectures have
already been implemented illustrating significantly better data-rates than that
achieved by RSA [115].

Eees are also proving to be an ideal choice in the emerging technology of
smart cards, since they provide low area, low power, yet efficient
implementations.

Further work could be performed on the design of generic silicon Eee
architectures and the efficiency of these architectures in contrast to RSA
designs could be examined.

www.manaraa.com

Appendix A - Modulo Arithmetic

A.I. Modulo Division

The product of two polynomials a(x) = a3 x3 + al Xl + a] X + ao and
b(x) = b3X3 + blxl + b]x + bo is c(x) where,

(AI)

The result, c(x), is reduced modulo a polynomial of degree 4 by
M(x) = X4 + 1, as depicted in Figure AI.

x4+i I C6X6 + C5XS + C4 X4 + C3 X3 + c]x2 + C1X+ Co

C6X6 + C6X2

C5X5+ C4X4 + C3X3 + (C2+C6)X2+ C1X+ Co

CSX5 + CsX

C4X4+ C3X3+ (C2 + C6)X2 + (Cl+CS)X+ Co

C4X4 + C4

Figure A-i. Modulo Division by M(x) = X4 + I

The result of c(x) modulo X4 + 1 can be represented by,

131

(A2)

www.manaraa.com

132

Therefore,
do = Co EEl C4

d, = c, EEl C5

d2 = C2 EEl C6

d3 = C3

A.2. Multiplicative Inverse of a Byte

The inverse of the byte 1100 1011 (OxCB) is as follows:

Table A-I. Multiplicative Inverse ofOxCB in GF(28)

Row Remainder Quotient
m(x) = x8 + X4 + x3 + X + 1

2 a(x) = x 7 + x6 + x3 + X + 1
3 x6 + x2 + x
4 I

x + 1
x + 1

The calculation m(x)la(x) is as shown in Figure A.2.

x+l

x 7 + x6 + x3 + X + 1 I Xli + X4 + x3 + X + 1
_ (x8 + X 7 + X 4 + x2 + x)

x 7 + x3+ x2 + 1

- (X7 + x6 + x3 + X + 1)

x6 + x 2 + X

Figure A-2. Division ofm(x)/a(x)

Auxiliary
o

The resulting remainder, x 6 + x 2 + x and the quotient, x + 1 are placed in
the corresponding columns in row 3. This quotient is multiplied by the
auxiliary value in row 2 and added to the auxiliary value in row 1. The
result, x + 1 is placed in the auxiliary column of row 3. The polynomial, a(x)
is now divided by the remainder in row 3, as outlined in Figure A.3.

Once again, the remainder, 1 and the quotient x + 1 are placed in the
corresponding columns in row 4. The auxiliary value of row 4 is,
(x + l)(x + 1) + 1 = x2+ 2x + 2. The coefficients must lie in the finite field,
{O,l }, hence, the auxiliary value is equal to x2 . Since the remainder is 1, x2 is
also the required inverse.

www.manaraa.com

x+l

x6 + X 2 + x I X 7 + X 6 + X 3 + X + 1
_ (x 7 + X3 + X2)

x6 + X2 + X + 1

_ (X6 + X 2 + X)

Figure A-3. Division of a(x) by remainder x6 + x2 + X

133

www.manaraa.com

Appendix B - DES Algorithm Permutations and S
Boxes

B.I. Expansion and P-Permutations

The expansion and P-Permutation used in a DES round are given in Table
B.1 and Table B.2 respectively.

Table B-1. Expansion Permutation

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1

Table B-2. P-Permutation

5 18 31
22 11 4

B.2. S-Boxes

Tables B.3 to B.1 0 are the DES algorithm S-Boxes.

135

www.manaraa.com

136

Table B-3. DES Algorithm S-Box 1

S-Box 1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table B-4. DES Algorithm S-Box 2

S-Box 2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table B-5. DES Algorithm S-Box 3

S-Box 3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table B-6. DES Algorithm S-Box 4

S-Box 4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 5 14

Table B-7. DES Algorithm S-Box 5

S-Box 5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 2 3

www.manaraa.com

137

Table B-B. DES Algorithm S-Box 6

5·Box 6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table B-9. DES Algorithm S-Box 7

5·Box 7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table B-lO. DES Algorithm S-Box 8

5·Box 8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

B.3. Key Scheduling Permutation to Remove Parity Bits

Table B.II outlines the permutation utilised to remove the parity bits in
the key scheduling process.

Table B-ll. Key Permutation

57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 17 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

www.manaraa.com

Appendix C - LUTs Utilised in Rijndael Algorithm

C.l. Encryption LUT Values

The Hexadecimal values contained in the LUT utilised during Rijndael
encryption are as outlined in the Table C.I. For example, an input of OxOO
would return the output, Ox63, an input of Ox08 would return the output,
Ox30.

C.2. Decryption LUT Values

The Hexadecimal values contained in the Inverse LUT utilised during
Rijndael decryption are as shown in the Table C.2. For example, an input of
OxOO would return the output, Ox52.

139

www.manaraa.com

140

Table C-l. LUT Utilised During Rijndael Encryption

0 1 2 3 4 5 6 7

0 63 7C 77 7B F2 6B 6F C5
1 CA 82 C9 70 FA 59 47 FO
2 B7 FO 93 26 36 3F F7 CC
3 04 C7 23 C3 18 96 05 9A
4 09 83 2C 1A 1B 6E 5A AO
5 53 01 00 ED 20 FC B1 5B
6 DO EF AA FB 43 40 33 85
7 51 A3 40 8F 92 90 38 F5
8 CD OC 13 EC 5F 97 44 17

9 60 81 4F DC 22 2A 90 88
A EO 32 3A OA 49 06 24 5C
B E7 C8 37 60 80 05 4E A9
C BA 78 25 2E 1C A6 B4 C6
0 70 3E B5 66 48 03 F6 OE
E E1 F8 98 11 69 09 8E 94
F 8C A1 89 00 BF E6 42 68

8 9 A B C 0 E F

0 30 01 67 2B FE 07 AB 76
1 AD 04 A2 AF 9C A4 72 CO
2 34 A5 E5 F1 71 08 31 15
3 07 12 80 E2 EB 27 B2 75
4 52 3B 06 B3 29 E3 2F 84
5 6A CB BE 39 4A 4C 58 CF
6 45 F9 02 7F 50 3C 9F A8
7 BC B6 OA 21 10 FF F3 02
8 C4 A7 7E 3D 64 50 19 73
9 46 EE B8 14 DE 5E OB DB
A C2 03 AC 62 91 95 E4 79
B 6C 56 F4 EA 65 7A AE 08
C E8 DO 74 1F 4B BO 8B 8A
0 61 35 57 B9 86 C1 10 9E
E 9B 1E 87 E9 CE 55 28 OF
F 41 99 20 OF BO 54 BB 16

www.manaraa.com

141

Table C-2. Inverse LUT Utilised During Decryption

0 1 2 3 4 5 6 7

0 52 09 6A 05 30 36 A5 38

1 7C E3 39 82 9B 2F FF 87

2 54 7B 94 32 A6 C2 23 30

3 08 2E A1 66 28 09 24 B2

4 72 F8 F6 64 86 68 98 16

5 6C 70 48 50 FO EO B9 OA

6 90 08 AB 00 8C BC 03 OA
7 00 2C 1E 8F CA 3F OF 02

8 3A 91 11 41 4F 67 OC EA

9 96 AC 74 22 E7 AO 35 85
A 47 F1 1A 71 10 29 C5 89
B FC 56 3E 4B C6 02 79 20
C 1F 00 A8 33 88 07 C7 31
D 60 51 7F A9 19 B5 4A 00
E AO EO 3B 40 AE 2A F5 BO
F 17 2B 04 7E BA 77 06 26

8 9 A B C D E F

0 BF 40 A3 9E 81 F3 07 FB
1 34 8E 43 44 C4 OE E9 CB
2 EE 4C 95 OB 42 FA C3 4E
3 76 5B A2 49 60 8B 01 25
4 04 A4 5C CC 50 65 B6 92
5 5E 15 46 57 A7 80 90 84
6 F7 E4 58 05 B8 B3 45 06
7 C1 AF BO 03 01 13 8A 6B
8 97 F2 CF CE FO B4 E6 73
9 E2 F9 37 E8 1C 75 OF 6E
A 6F B7 62 OE M 18 BE 1B
B 9A OB CO FE 78 CO 5A F4
C B1 12 10 59 27 80 EC 5F
D 20 E5 7A 9F 93 C9 9C EF
E C8 EB BB 3C 83 53 99 61
F E1 69 14 63 55 21 OC 70

www.manaraa.com

Appendix D - LUTs in LUT -Based Rijndael
Architecture

D.l. Encryption LUT Values

Table D.I contains the values of the ByteSub LUT multiplied in GF(28)

by the hexadecimal number, Ox02 (S[a] .02 or LUT_02).

Table D.2 contains the values of the ByteSub LUT multiplied in GF(28)

by the hexadecimal number, Ox03 (S[a] .03 or LUT _03).

D.2. Decryption LUT Values

Table D.3 contains the values of the LUT_OD look-up table required in
decryption, which is created by multiplying every possible byte from OxOO to
Oxll by OxOD in GF(28).

Table DA contains the values of the LUT_09 look-up table required in
decryption, which is created by multiplying every possible byte OxOO to
Oxll by Ox09 in GF(28).

Table D.S contains the values of the LUT_OB look-up table required in
decryption, which is created by multiplying every possible byte from OxOO to
Oxll by OxOB in GF(28).

Table D.6 contains the values of the LUT_OE look-up table required in
decryption, which is created by multiplying every possible byte from OxOO to
Oxll by OxOE in GF(28).

143

www.manaraa.com

144

Table D-l. LUT_02 Utilised During Encryption

0 1 2 3 4 5 6 7

0 C6 F8 EE F6 FF 06 DE 91
1 8F 1F 89 FA EF B2 8E FB
2 75 E1 3D 4C 6C 7E F5 83
3 08 95 46 90 30 37 OA 2F
4 12 10 58 34 36 DC B4 5B
5 A6 B9 00 C1 40 E3 79 B6
6 BB C5 4F ED 86 9A 66 11
7 A2 50 80 05 3F 21 70 F1
8 81 18 26 C3 BE 35 88 2E
9 CO 19 9E A3 44 54 3B OB
A DB 64 74 14 92 OC 48 B8
B 05 8B 6E OA 01 B1 9C 49
C 6F FO 4A 5C 38 57 73 97
D EO 7C 71 CC 90 06 F7 1C
E 09 EB 2B 22 02 A9 07 33
F 03 59 09 1A 65 07 84 DO

8 9 A B C D E F

0 60 02 CE 56 E7 B5 40 EC
1 41 B3 5F 45 23 53 E4 9B
2 68 51 01 F9 E2 AB 62 2A
3 OE 24 1B OF CD 4E 7F EA
4 A4 76 B7 7D 52 DO 5E 13
5 04 80 67 72 94 98 BO 85
6 8A E9 04 FE AO 78 25 4B
7 63 77 AF 42 20 E5 FO BF
8 93 55 FC 7A C8 BA 32 E6
9 8C C7 6B 28 A7 BC 16 AD
A 9F BO 43 C4 39 31 03 F2
B 08 AC F3 CA CF F4 47 10
C CB A1 E8 3E 96 61 00 OF
D C2 6A AE 69 17 99 3A 27
E 20 3C 15 C9 87 AA 50 A5
F 82 29 5A 1E 7B A8 60 2C

www.manaraa.com

145

Table D-2. LUT _03 Utilised During Encryption

0 1 2 3 4 5 6 7

0 A5 84 99 80 00 BO B1 54

1 45 90 40 87 15 EB C9 OB
2 C2 1C AE 6A 5A 41 02 4F

3 OC 52 65 5E 28 A1 OF B5
4 1B 9E 74 2E 20 B2 EE FB
5 F5 68 00 2C 60 1F C8 ED
6 6B 2A E5 16 C5 07 55 94
7 F3 FE CO 8A AD BC 48 04
8 4C 14 35 2F E1 A2 CC 39

9 AO 98 01 7F 66 7E AB 83
A 3B 56 4E 1E DB OA 6C E4
B 32 43 59 B7 8C 64 02 EO
C 05 88 6F 72 24 F1 C7 51
0 90 42 C4 AA 08 05 01 12
E 38 13 B3 33 BB 70 89 A7
F 8F F8 80 17 OA 31 C6 B8

8 9 A B C 0 E F

0 50 03 A9 70 19 62 E6 9A
1 EC 67 FO EA BF F7 96 5B
2 5C F4 34 08 93 73 53 3F
3 09 36 9B 3D 26 69 CD 9F
4 F6 40 61 CE 7B 3E 71 97
5 BE 46 09 4B DE 04 EO 4A
6 CF 10 06 81 FO 44 BA E3
7 OF C1 75 63 30 1A OE 60
8 57 F2 82 47 AC E7 28 95
9 CA 29 03 3C 79 E2 10 76
A 50 BE EF AB A8 A4 37 88
B 84 FA 07 AF 25 8E E9 18
C 23 7C 9C 21 DO DC 86 85
0 A3 5F F9 DO 91 58 27 B9
E B6 22 92 20 49 FF 78 7A
F C3 BO 77 11 CB FC 06 3A

www.manaraa.com

146

Table D-3. LUT_OD Utilised During Decryption

0 1 2 3 4 5 6 7
0 00 00 1A 17 34 39 2E 23
1 DO DO CA C7 E4 E9 FE F3
2 BB B6 Ai AC 8F 82 95 98
3 6B 66 71 7C 5F 52 45 48
4 60 60 77 7A 59 54 43 4E
5 BO BO A7 AA 89 84 93 9E
6 06 DB CC C1 E2 EF F8 F5
7 06 OB 1C 11 32 3F 28 25
8 OA 07 CO CD EE E3 F4 F9
9 OA 07 10 10 3E 33 24 29
A 61 6C 7B 76 55 58 4F 42
B B1 BC AB A6 85 88 9F 92
C B7 BA AD AO 83 8E 99 94
0 67 6A 7D 70 53 5E 49 44
E OC 01 16 1B 38 35 22 2F
F DC 01 C6 CB E8 E5 F2 FF

8 9 A B C 0 E F
0 68 65 72 7F 5C 51 46 4B
1 B8 B5 A2 AF 8C 81 96 9B
2 03 DE C9 C4 E7 EA FO FO
3 03 OE 19 14 37 3A 20 20
4 05 08 iF 12 31 3C 2B 26
5 05 08 CF C2 E1 EC FB F6
6 BE B3 A4 A9 8A 87 90 90
7 6E 63 74 79 5A 57 40 40
8 82 8F A8 A5 86 88 9C 91
9 62 6F 78 75 56 5B 4C 41
A 09 04 13 1E 3D 30 27 2A
B 09 04 C3 CE ED EO F7 FA
C OF 02 C5 C8 EB E6 F1 FC
0 OF 02 15 18 3B 36 21 2C
E 64 69 7E 73 50 50 4A 47
F B4 B9 AE A3 80 80 9A 97

www.manaraa.com

147

Table D-4. LUT_09 Utilised During Decryption

0 1 2 3 4 5 6 7

0 00 09 12 1B 24 20 36 3F
1 48 41 5A 53 6C 65 7E 77
2 90 99 82 8B B4 BO A6 AF
3 08 01 CA C3 FC F5 EE E7
4 3B 32 29 20 1F 16 00 04
5 73 7A 61 68 57 5E 45 4C
6 AB A2 B9 BO 8F 86 90 94
7 E3 EA F1 F8 C7 CE 05 OC
8 76 7F 64 60 52 5B 40 49
9 3E 37 2C 25 1A 13 08 01
A E6 EF F4 FO C2 CB 00 09
B AE A7 BC B5 8A 83 98 91
C 40 44 5F 56 69 60 7B 72

0 05 DC 17 1E 21 28 33 3A
E 00 04 CF C6 F9 FO EB E2
F 95 9C 87 8E B1 B8 A3 AA

8 9 A B C 0 E F

0 EC E5 FE F7 C8 C1 OA 03
1 A4 AO B6 BF 80 89 92 9B
2 7C 75 6E 67 58 51 4A 43
3 34 3D 26 2F 10 19 02 OB
4 07 OE C5 CC F3 FA E1 E8
5 9F 96 80 84 BB B2 A9 AD
6 47 4E 55 5C 63 6A 71 78
7 OF 06 10 14 2B 22 39 30
8 9A 93 88 81 BE B7 AC A5
9 02 OB CO C9 F6 FF E4 EO
A OA 03 18 11 2E 27 3C 35
B 42 4B 50 59 66 6F 74 7D
C A1 A8 B3 BA 85 8C 97 9E
0 E9 EO FB F2 CO C4 OF 06
E 31 38 23 2A 15 1C 07 OE
F 79 70 6B 62 50 54 4F 46

www.manaraa.com

148

Table D-5. LUT_OB Utilised During Decryption

0 1 2 3 4 5 6 7
0 00 OB 16 10 2C 27 3A 31
1 58 53 4E 45 74 7F 62 69
2 BO BB A6 AD 9C 97 8A 81
3 E8 E3 FE F5 C4 CF 02 09
4 7B 70 60 66 57 5C 41 4A
5 23 28 35 3E OF 04 19 12
6 CB CO DO 06 E7 EC F1 FA
7 93 98 85 8E BF B4 A9 42
8 F6 FO EO EB OA 01 CC C7
9 AE A5 B8 B3 82 89 94 9F
A 46 40 50 5B 6A 61 7C 77

B 1E 15 08 03 32 39 24 2F
C 80 86 9B 90 A1 M B7 BC
D 05 DE C3 C8 F9 F2 EF E4
E 3D 36 2B 20 11 1A 07 OC
F 65 6E 73 78 49 42 5F 54

8 9 A B C D E F

0 F7 FC E1 EA DB DO CD C6
1 AF A4 B9 B2 83 88 95 9E
2 47 4C 51 5A 6B 60 7D 76
3 1F 14 09 02 33 38 25 2E
4 8C 87 9A 91 AO AB B6 BO
5 04 OF C2 C9 F8 F3 EE E5
6 3C 37 2A 21 10 1B 06 00
7 64 6F 72 79 48 43 5E 55
8 01 OA 17 1C 2D 26 3B 30
9 59 52 4F 44 75 7E 63 68
A B1 BA A7 AC 9D 96 8B 80
B E9 E2 FF F4 C5 CE 03 08
C 7A 71 6C 67 56 50 40 4B
D 22 29 34 3F OE 05 18 13
E CA C1 DC 07 E6 ED FO FB
F 92 99 84 8F BE B5 A8 A3

www.manaraa.com

149

Table D-6. LUT_DE Utilised During Decryption

0 1 2 3 4 5 6 7

0 00 OE 1C 12 38 36 24 2A
1 70 7E 6C 62 48 46 54 5A
2 EO EE FC F2 08 06 C4 CA
3 90 9E 8C 82 A6 A8 B4 BA
4 DB 05 C7 C9 E3 ED FF F1
5 AB A5 B7 B9 93 90 8F 81
6 3B 35 27 29 03 00 1F 11
7 4B 45 57 59 73 7D 6F 61
8 AD A3 B1 BF 95 9B 89 87
9 DO 03 C1 CF E5 EB F9 F7
A 40 43 51 5F 75 7B 69 67
B 3D 33 21 2F 05 OB 19 17

C 76 78 6A 64 4E 40 52 5C
D 06 08 1A 14 3E 30 22 2C
E 96 98 8A 84 AE AO B2 BC
F E6 E8 FA F4 DE DO C2 CC

8 9 A B C D E F
0 41 4F 50 53 79 77 65 6B
1 31 3F 20 23 09 07 15 1B
2 A1 AF BO B3 99 97 85 8B
3 01 OF CD C3 E9 E7 F5 FB
4 9A 94 86 88 A2 AC BE BO
5 EA E4 F9 F8 02 DC CE CO
6 7A 74 66 68 42 4C 5E 50
7 OA 04 16 18 32 3C 2E 20
8 EC E2 FO FE 04 OA C8 C6
9 9C 92 80 8E A4 M B8 B6
A OC 02 10 1E 34 3A 28 26
B 7C 72 60 6E 44 4A 58 56
C 37 39 28 25 OF 01 13 10

D 47 49 5B 55 7F 71 63 60
E D7 09 CB C5 EF E1 F3 FO
F A7 A9 BB B5 9F 91 83 80

www.manaraa.com

Appendix E - SHA-384/SHA-S12 Constants

The 64-bit constants specified In the SHA-512 and SHA-384
specifications [107] are outlined below.

Ko 428a2f98 d728ae22 K 20 = 2de92c6f 592b0275

KI 71374491 23ef65cd K21 = 4a7484aa 6ea6e483

K2 b5cOfbcf ec4d3b2f K22 = 5cbOa9dc bd41fbd4

K3 e9b5dba5 8189dbbc K 23 = 76f988da 831153b5

K4 3956c25b f348b538 K24 = 983e5152 ee66dfab

K5 59flllf1 b605d019 K 25 a831c66d 2db43210

K6 923f82a4 af194f9b K 26 bOO327c8 98fb213f

K7 ab1c5ed5 da6d8118 K27 bf597fc7 beefOee4

Ks d807aa98 a3030242 K 2S c6eOObf3 3da88fc2

K9 12835b01 45706fbe K 29 d5a79147 930aa725

K IO = 243185be 4ee4b28c K30 06ca6351 eOO3826f

Kll = 550c7dc3 d5ffb4e2 K31 14292967 OaOe6e70

K12 = 72be5d74 f27b896f K)2 27b70a85 46d22ffc

K13 = 80deblfe 3b1696b1 K33 2e1b2138 5c26c926

K14 = 9bdc06a7 25c71235 K34 4d2c6dfc 5ac42aed

K I5 = c19bf174 cf692694 K35 53380d13 9d95b3df

KI6 = e49b69c1 gef14ad2 K36 650a7354 8baf63de

KI7 = efbe4786 384f25e3 K37 766aOabb 3c77b2a8

K IS = Ofc19dc6 8b8cd5b5 K3S 81c2c92e 47edaee6

KI9 = 240ca1cc 77ac9c65 K39 92722c85 1482353b

151

www.manaraa.com

152

~O a2bfe8al 4cfl0364 K60 90befffa 23631e28

K41 a81a664b bc423001 K6l a4506ceb de82bde9

K42 c24b8b70 dOf89791 K62 bef9a3f7 b2c67915

~3 c76c51a3 0654be30 K63 c67178f2 e372532b

K44 d192e819 d6ef5218 ~4 ca273ece ea26619c

~s d6990624 5565a910 K6S d186b8c7 21cOc207

~6 f40e3585 5771202a K66 eada7dd6 cdeOeble

~7 106aa070 32bbdlb8 K67 f57d4f7f ee6ed178

K4B 19a4c116 b8d2dOc8 K6B 06f067aa 72176fba

~9 le376c08 5141ab53 K69 Oa637dc5 a2c898a6

Kso 2748774c df8eeb99 K70 113f9804 bef90dae

KSl 34bObcb5 e19b48a8 K71 Ib710b35 131c471b

KS2 391cOcb3 c5c95a63 K72 28db77f5 23047d84

KS3 4ed8aa4a e3418acb K73 32caab7b 40c72493

KS4 5b9cca4f 7763e373 K74 3cgebeOa 15c9bebc

Kss 682e6ff3 d6b2b8a3 K7S 431d67c4 9cl00d4c

KS6 748f82ee 5defb2fc K76 4cc5d4be cb3e42b6

KS7 78a5636f 43172f60 K77 597f299c fc657e2a

KSB 84c87814 alfOab72 K7B 5fcb6fab 3ad6faec

KS9 8cc70208 1a643gec K79 6c44198c 4a475817

www.manaraa.com

References

[I]

[2]

[3]
[4]
[5]

[6]
[7]

[8]
[9]

[\0]
[11]

[12]

[13]

[14]

[I 5]

[16]

Diffie, W., Hellman, M. (1976), New Directions in Cryptography, IEEE Transactions
on Information Theory, pp 664 - 654.
Caloyannides, M. (2000), Encryption Wars: Early Battles, IEEE Spectrum, Volume
37, Number 4, April.
SSH (2002), Introduction to Cryptography, URL: http://www.ssh.com/tech/crypto/.
Singh, S. (1999), The Code Book, Fourth Estate Limited.
Schneier, B. (1996), Applied Cryptography - Protocols, Algorithms and Source Code
in C, John Wiley & Sons, Inc., 2nd Edition.
Mollin, R.A. (2001), An Introduction to Cryptography, Chapman & Hall/CRe.
Eskicioglu, A. and Litwin, L. (2001), Cryptography, IEEE Potentials,
February/March.
Pfleeger, C. (2000), Security in Computing, Second Edition, Prentice-Hall.
Stallings, W. (1999), Cryptography and Network Security Principles and Practice,
Second Edition, Prentice Hall International.
Stinson, D. (1995), Cryptography-Theory and Practice, CRC Press.
Delfs, H., Knebl, H. (2002), Introduction to Cryptography - Principles and Practice,
Springer-Verlag.
Brown, L. (1999), A Current Perspective on Encryption Algorithms, Uniforum
NZ'99, New Zealand, April.
Van Der Lubbe, J.e.A. (1998), Basic Methods of Cryptography, Cambridge
University Press.
Schneier, B. (2000), A Self-Study Course in Block Cipher Cryptanalysis, Cryptologia,
Vo1.24, No.1, pp. 18-43, January.
Kocher, P. (1996), Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS
and other Systems, Advances in Cryptology - CRYPTO'96, Springer~Verlag, LNCS
1109, ISBN 3-540-61512-1, pp 104-113.
Kocher, P., Jaffe, J., Jun, B. (1999), Differential Power Analysis, Advances in
Cryptology - CRYPTO'99, Springer-Verlag, LNCS 1666, ISBN 3-540-66347-9, pp
388-397.

153

www.manaraa.com

154

[17] Elbirt, AJ., Yip, W., Chetwynd, B., Paar, C. (2000), An FPGA Implementation and
Performance Evaluation ofthe'AES Block Cipher Candidate Algorithm Finalists, The
Third Advanced Encryption Standard (AES3) Candidate Conference, April, New
York, USA.

[18] Ridge, D., Hamill, R., Craig, R., Farson, S., McCanny, J. (1996), Advanced DSP on
FPGAs and CPLDs, ICSPAT - International Conference on Signal Processing
Applications and Theory.

[19] Meyer-Baese, U. (2001), Digital Signal Processing with Field Programmable Gate
Arrays, Springer-Verlag.

[20] Wade, W. (2001), Encryption Migrates to Silicon as Net Traffic Swells, EE Times,
May.

[21] NCIPHER (2001), KPMG White Paper, URLhttp://www.ncipher.com.
[22] Bohm, M. (2002), FPGA Evolution: New Design Methods on the Horizon, EE Times,

January.
[23] Dandalis, A., Prasanna, V.K., Rolim, J.D.P. (2000), A Comparative Study of

Performance of AES Candidates Using FPGAs, The Third Advanced Encryption
Standard (AES3) Candidate Conference, April, New York, USA.

[24] Xilinx Virtex™ FPGA Data Sheets (2001), URL:
http://www.xilinx.comlpartinfo/databook.htm.

[25] Curtin, M., Dolske, J. (1998), A Brute Force Search of DES Keyspace, The Magazine
of USE NIX and SAGE - ;Iogin:, May.

[26] RSA Security (I997), Team of Universities, Companies and Individual Computer
Users Linked Over the Internet Crack RSA's 56-Bit DES Challenge, URL:
http://www.rsasecurity.comlnews/pr/970619-I.html. June.

[27] Electronic Frontier Foundation (1999), Cracking DES: Secrets of Encryption
Research, Wiretap Politics & Chip Design, URL: http://www.eff.org/descracker/.

[28] Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, 1., Roback, E.
(2001), Report on the Development of the Advanced Encryption Standard (AES),
Journal of Research of the National Institute of Standards and Technology, Volume
106, Number 2, URL: http://www.nist.gov/jres, May-June.

[29] Menezes, A., Oorschot, P., Vanstone, S. (1997), Handbook of Applied Cryptography,
CRC Press.

[30] AES3 Third AES Candidate Conference, (2000), URL:
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm, New York.

[31] Gaj, K., Chodowiec, P. (2000), Comparison of the Hardware Performance of the AES
Candidates using Reconfigurable Hardware, The Third Advanced Encryption
Standard (AES3) Candidate Conference, April, New York, USA.

[32] Weeks, B., Bean, M., Rozylowicz, T., Ficke, C. (2000), Hardware Performance
Simulations of Round 2 Advanced Encryption Standard Algorithms, The Third
Advanced Encryption Standard (AES3) Candidate Conference, April, New York,
USA.

[33] Ichikawa, T., Kasuya, T., Matsui, M. (2000), Hardware Evaluation of the AES
Finalists, The Third Advanced Encryption Standard (AES3) Candidate Conference,
April, New York, USA.

[34] Lidl, R., Niederreiter, H. (1994), Introduction to Finite Fields and their Applications,
Cambridge University Press, Revised Edition, 1994.

[35] US National Institute of Standards and Technology - NIST (1999), Data Encryption
Standard (DES), FIPS PUB 46-3, reaffirmed October.

[36] ANSI X9.17 (Revised) (1986), American National Standard for Financial Institution
Key Management (Wholesale), American Bankers Association.

[37] ISO DIS 8732 (1987), Banking - Key Management (Wholesale), Association for
Payment Clearing Services, London, December.

www.manaraa.com

155

[38] McLoone, M., McCanny, J.V. (2000), A High Performance Implementation of DES,
IEEE Workshop on Signal Processing Systems Design and Implementation -
SiPS2000, Eds. M. Bayoumi, E. Freidman, IEEE Signal Processing Society Press,
ISBN 0-7803-6488-0, pp374-383, Louisiana, USA, October.

[39] McLoone, M., McCanny, J.V. (2000), Data Encryption Apparatus, UK Patent
Application, No. 0023409.6, Filed October.

[40] McLoone, M., McCanny, lV. (2003), A High Performance FPGA Implementation of
DES Using a Novel Method for Implementing the Key Schedule, lEE Proceedings -
Circuits, Devices and Systems, accepted March 2003.

[41] National Bureau of Standards, (1980), DES Modes of Operation, Federal Information
Processing Standards Publication, FIPS PUB 81, December.

[42] ANSI X9.52 (1998), Triple Data Encryption Algorithm Modes of Operation.
[43] Goubert, l, Hoomaert, F., Desmedt, Y. (1985), Efficient Hardware implementation of

the DES, Advances in Cryptology - CRYPTO'84, Springer-Verlag, LNCS 196, ISBN
3-540-15658-5, pp 147-173, Berlin.

[44] Eberle, H. (1993), High-speed DES Implementation for Network Applications, Izth
Annual International Cryptology Conference Proceedings - CRYPTO'92, Springer
Verlag, LNCS 0740, ISBN 3-540-57340-2, pp 521-539, California.

[45] Wilcox, D.C., Pierson, L.G., Robertson, PJ., Witzke, E.L., Gass, K. (1999), Sandia
National Laboratories, A DES ASIC Suitable for Network Encryption at 10 Gps and
Beyond, First International Workshop on Cryptographic Hardware and Embedded
Systems - CHES '99, Springer-Verlag, LNCS 1717, ISBN 3-540-66646-X, pp 37-48,
August.

[46] Leonard, J., Mangione-Smith, W.H. (1997), A Case Study of Partially Evaluated
Hardware Circuits: Key-specific DES, Field Programmable Logic and Applications -
FPL 1997, Springer-Verlag, LNCS 1304, ISBN 3-540-63465-7, ppI51-160.

[47] Wong, K., Wark, M., Dawson, E. (1998), A Single-Chip FPGA Implementation of the
Data Encryption Standard (DES) Algorithm, IEEE Globecom Communications
Conference, pp 827-832, Piscataway, USA.

[48] Kaps, J.P., Paar, C. (1998), Fast DES Implementations for FPGAs and its Application
to a Universal Key-Search Machine, 5th Annual Workshop on Selected Areas in
Cryptography - SAC'98, Springer-Verlag, LNCS 1556, ISBN 3-540-65894-7, pp 234-
247, Ontario, Canada, August.

[49] Patterson, C. (2000), Xilinx Inc., High Performance DES Encryption in Virtex FPGAs
using Jbits, IEEE Symposium on Field-Programmable Custom Computing Machines -
FCCM'OO, IEEE Computer Society, ISBN 0-7695-0871-5, pp 113-121, California,
April.

[50] Free-DES Core (2000), URL:http://www.free-ip.comlDES/. March.
[51] Trimberger, S., Pang, R., Singh, A. (2000), A 12Gpbs DES Encryptorl Decryptor

Core in an FPGA, Second International Workshop on Cryptographic Hardware and
Embedded Systems - CHES 2000, Springer-Verlag, LNCS 1965, ISBN 3-540-41455-
X, pp 156-163, August.

[52] Biham E. (1997), A Fast New DES Implementation in Software, Fast Software
Encryption 4th International Workshop, FSE'97, Springer-Verlag, LNCS 1267, ISBN
3-540-63247-6,pp 260-271.

[53] Memec Design Services (1999), Alliance Core, XF-DES Data Encryption Standard
Engine Core, URL:http://www.memecdesign.comlproduct. September.

[54] CAST, Inc. (1999), Alliance Core, X_DES Cryptoprocessor, URL:http://www.cast
inc.comlcores/xdes, February.

[55] Haskins, G.M. (1997), Securing Asynchronous Transfer Mode Networks, Masters
thesis, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, May.

[56] Daemen, J., Rijmen, V. (2002), The Design of Rijndael: AES - The Advanced
Encryption Standard, Springer-Verlag, ISBN 3-540-42580-2.

www.manaraa.com

156

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

US National Institute of Standards and Technology (NIST) (2001), Advanced
Encryption Standard, FIPS PUB 197, November.
McLoone, M., McCanny, J.V. (2001), A Component for Generating Data
Encryption/Decryption Apparatus, UK Patent Application No. 0111521.1, Filed May.
McLoone, M., McCanny, J.V. (2001), High Performance Single-Chip FPGA Rijndael
Algorithm Implementations, Third International Workshop on Cryptographic
Hardware and Embedded Systems - CHES 2001, Eds. C Koy, D. Naeeache, C. Paar,
Springer-Verlag, ISBN 3-540-42521-7, pp65-77, Paris, France, May.
McLoone, M., McCanny, J.V. (2001), High Performance FPGA Implementation of
Rijndael, Irish Signals and Systems Conference - ISSC 200 I, Eds. R. Shorten, T.
Ward, T. Lysaght, ISBN 0-9015-1963-4, pp415-420, NUl Maynooth, Ireland, June.
McLoone, M., McCanny, J.V. (2001), Single-Chip FPGA Implementation of
Advanced Encryption Standard Algorithm, Field Programmable Logic and
Applications - FPL 2001, Eds. G. Brebner, R. Woods, Springer-Verlag, ISBN 3-540-
42499-7, ppI52-161, Belfast, Northern Ireland, August.
McLoone, M., McCanny, J.V. (2001), Apparatus for Selectably Encrypting and
Decrypting Data", UK Patent Application No.OI07592.8, Filed March.
Chodowiec, P. Khuon, P., Gaj, K. (2001), Fast Implementations of Secret-Key Block
Ciphers Using Mixed Inner- and Outer-Round Pipelining, Proc. 9th ACM International
Symposium on Field-Programmable Gate Arrays- FPGA 2001, pp 94-102, California.
McMillan, S., Patterson, C. (2001), Jbits™ Implementations of the Advanced
Encryption Standard (Rijndael), Field Programmable Logic and Applications - FPL
2001, Springer-Verlag, LNCS 2147,ISBN 3-540-42499-7, pp 162-171, Belfast,
Northern Ireland, August.
Mroczkowski, P. (2000), Implementation of the Block Cipher Rijndael Using AItera
FPGA, The Third Advanced Encryption Standard (AES3) Candidate Conference,
April, New York, USA.
Gladman, B., (2001), The AES Algorithm (Rijndael) in C and C++, URL:
http://fp.gladman.plus.comlcryptography_technologylrijndael/ index.htrn, April.
McLoone, M., McCanny, J.V. (2001), Rijndael FPGA Implementation Utilizing
Look-Up Tables, IEEE Workshop on Signal Processing Systems Design and
Implementation - SiPS 2001, Eds. F. Catthoor, M. Moonen, IEEE Signal Processing
Society, ISBN 0-7803-7145-3, pp349-359, Antwerp, Belgium, September.
McLoone, M., McCanny, J.V. (2003), Rijndael FPGA Implementations Utilizing
Look-Up Tables, Journal of VLSI Signal Processing Systems, Eds. F. Catthoor, M.
Moonen, Kluwer Academic Publishers, vol. 34-3, pp 261-275.
McLoone, M., McCanny, J.V. (2003), Generic Architecture and Semiconductor IP
cores for AES Cryptography, lEE Proceedings - Computers & Digital Techniques,
accepted February 2003.
Hu, Y., McLoone, M. (2001), An Apparatus Generating Encryption/Decryption Keys,
UK Patent Application No.0121794.3, Filed September.
Xilinx Virtex-II Pro™ Platform FPGAs (2002), Introduction and Overview -
Advanced Product Specifcation, URL:
http://www.xilinx.comlpublications/products/v2pro/ds ~df/ds083-1. pdf
US National Institute of Standards and Technology (NIST) (2001), Recommendation
for Block Cipher Modes of Operation Methods and Techniques, Special Publication
800-38A, December.
Bailey, D., Cammack, W., Guajardo, J., Paar, C. (1999), Cryptography in Modem
Communication Systems, Texas Instruments DSPS FEST'99, Houston, August.
Palnitkar, S. (1999), Implementing a Design Reuse Methodology Using a Design Data
Management System, Synopsis User Group, SNUG'99, San Jose.
Meiyappan, S., Jaramillo, K., Chambers, P. (1999), VHDL Coding Styles for
Reusable, Synthesizable Designs, Synopsis User Group, SNUG'99, Boston.

www.manaraa.com

157

[76] Stallings, W. (1995), Network and Internetwork Security Principles and Practice,
Prentice Hall International.

[77] McLoone, M., McCanny, J.V. (2002), A Single-Chip IPSec Cryptographic Processor,
IEEE Workshop on Signal Processing Systems Design and Implementation - SiPS
2002, ISBN 0-7803-7587-4, ppI33-138, California, USA, October.

[78] McLoone, M., McCanny, J.V. (2002), Efficient Single-Chip Implementation of SHA-
384 & SHA-512, IEEE International Conference on Field-Programmable Technology
(FPT). ISBN 0-7803-7574-2, pp 311-314, Hong Kong, December.

[79] Cisco Systems Documentation (1999), Internetworking Technology Overview:
Chapter 30 - Internet Protocols, URL: httpllwww.cisco.com. June.

[80] Frankel, S (2001), Demystifying the IPSec Protocol, Artech House Inc.
[81] Kent, S., Atkinson, R. (1998), Security Architecture for the Internet Protocol, RFC

2401, Internet Engineering Task Force (IETF), November.
[82] Kent, S., Atkinson, R. (1998), IP Authentication Header, RFC 2402, Internet

Engineering Task Force (IETF), November.
[83] Kent, S., Atkinson, R. (1998), IP Encapsulating Security Payload (ESP), RFC 2406,

Internet Engineering Task Force (IETF), November.
[84] Oppliger, R. (1997), Internet and Intranet Security, Artech House, Inc.
[85] Gollmann, D. (1999), Computer Security. John Wiley & Sons Ltd.
[86] Harkins, D., Carrel, D. (1998), The Internet Key Exchange (IKE), RFC 2409, Internet

Engineering Task Force (IETF), November.
[87] Krawczyk, H., Bellare, M., Canetti, R. (1997), HMAC: Keyed-Hashing for Message

Authentication, RFC21 04, Internet Engineering Task Force (IETF), February.
[88] Madson, c., Glenn R. (1998), The Use of HMAC-SHA-I-96 within ESP and AH,

RFC 2404, Internet Engineering Task Force (IETF), November.
[89] Ferguson, N., Schneier, B. (2000), A Cryptographic Evaluation of IPSec, Counterpane

Internet Security Inc., http://www.counterpane.com/ipsec.html.
[90] Dandalis, A., Prasanna, V.K., Rolim, lD.P. (2000b), An Adaptive Cryptographic

Engine for IPSec Architectures, IEEE Symposium on Field-Programmable Custom
Computing Machines - FCCM'OO, IEEE Computer Society, ISBN 0-7695-0871-5, pp
132-144, California, April.

[91] Dobbertin, H. (1996), The Status of MD5 After a Recent Attack, RSA Laboratories'
Crytobytes, vol 2, no. 2.

[92] US National Institute of Standards and Technology (NIST) (2001), Descriptions of
SHA-256, SHA-384 and SHA-512, http://csrc.nist.gov/encryption/shs/sha256-384-
512.pdf.

[93] US National Institute of Standards and Technology (NIST) (1995), Secure Hash
Standard, FIPS PUB 180-1, April.

[94] US National Institute of Standards and Technology (NIST) (2002), The Keyed-Hash
Message Authentication Code (HMAC), FIPS PUB 198, March.

[95] Pereira, R. (1998), IP Payload Compression Using DEFLATE, RFC 2394, Internet
Engineering Task Force (lETF), November.

[96] McGregor, J.P., Lee, R.B. (2000), Performance Impact of Data Compression on
Virtual Private Network Transactions, 25th IEEE Conference on Local Computer
Networks - LCN 2000, IEEE Computer Society, ISBN 0-7695-0912-6, pp 500-510,
November.

[97] Helion Technologies Limited (2002), Datasheet - High Performance SHA-l Hash
Core for Xilinx FPGA, URL: http://www.heliontech.com.

[98] Alma Technologies (2001), SHA-I Core - Product Specification, URL:
http://www.alma-tech.com.

[99] SETCo - SET Secure Electronic Transaction LLC (2002), SET Specification,
http://www.setco.org/set_specifications.html

www.manaraa.com

158

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]
[109]
[110]

[III]

[112]

[113]

[114]

[115]

Dierks, T., Allen, C. (1999), The TLS Protocol Version 1.0, RFC 2246, Internet
Engineering Task Force (IETF), January.
Chown, P. (2002), AES Ciphersuites for TLS, Internet draft, Internet Engineering
Task Force (lETF), January.
WAP - Wireless Application Protocol Forum (2001), Wireless Transport Layer
Security (WTLS), W AP-261-WTLS-200 10406-a, Version 06-Apr-200 I,
http://www.wapforum.org.
RSA Security (200 I), Improving Wireless LAN Authentication,
www.rsasecurity.com.
Borisov, N., Goldberg, I., Wagner, D. (2001), Intercepting Mobile Communications:
The Insecurity of S02.ll, 7th International Conference on Mobile Computing and
Networking, Rome, Italy, July.
Stubblefield, A. Ioannidis, J. Rubin, A. (2002), Using the Fluhrer, Mantin and Shamir
Attack to Break WEP, Network and Distributed System Security Symposium - NDSS
2002, The Internet Society, California, February.
Ericsson (2001), Wireless LAN Solution White-paper, www.ericsson.com.
US National Institute of Standards and Technology (NIST) (200 I), Secure Hash
Standard, Draft FIPS PUB ISO-2, May.
Secucore (2001), SHA-256 Core, URL: http://www.secucore.com.
HDL Design House (2002), HCR SHA 256, URL: http://www.hdl-dh.com.
International Engineering Consortium (IEC) (2002), Virtual Private Networks
(VPNs), URL: http://www.iec.org/online/tutorials/vpnl.
RSA Security (2002), How Fast is the RSA Algorithm?,
URL: http://www.rsasecurity.comlrsalabs/faq/3-1-2.html.
Bitan, S. (1998), Hardware Implementation of IPSec: Performance implications,
Firstvpn.com White Paper, URL:http://www.firsvpn.comlpapers/radguard/Ipsec. pdf.
Menezes, A.J. (1993), Elliptic Curve Public Key Cryptosystems, Kluwer Academic
Publishers.
Jurisic, A., Menezes, A.J. (1997), Elliptic Curves and Cryptography, Certicom White
Paper, April.
Orlando, G., Paar, C., (2000), A High-Performance Reconfigurable Elliptic Curve
Processor for GF(2m), Second International Workshop on Cryptographic Hardware
and Embedded Systems - CHES 2000, Springer-Verlag, LNCS 1965, ISBN 3-540-
41455-X, pp 41-56, August.

www.manaraa.com

Index

Active attack, 9
AES Development, 13, 14
Asymmetric Cryptosystem, 5
Authentication, 99

Brute-force attack, 8

Caesar cipher, 3
Chosen-Ciphertext Attack, 9
Chosen-Plaintext Attack, 9
Ciphertext-Only Attack, 9
Classical encryption, 2
Confidentiality,99
Counter Mode, 86
Cryptanalysis, 8

DES CBC Mode, 33
DES CFB Mode, 34
DES Decryption, 32
DES ECB Mode, 33
DES Key Scheduling, 31
DES OFB Mode, 34
DES S-boxes, 31
DESCHALL, 13
Digital Signatures, 7

159

Elliptic Curve Cryptography, 130

Feistel cipher, 15
Finite Field Mathematics, 21
Function/, 29

Hash Functions, 7
HMAC, 107, 110

Integrity, 99
Internet Key Exchange, 129
IP Authentication Header, 101
IP Encapsulating Security

Payload, 103
IPSec, 100
Irreducible polynomial, 22
ISAKMP, 129
Iterated cipher, 15
Iterative Looping, 10

Kerkhoffs principle, 8
Known-Plaintext Attack, 9

Loop unrolling, 10

Man-in-the-Middle Attack, 9

www.manaraa.com

160

~~S,2, 7,14,15,16,18,19,
20,21,27

~echanical Encryption Devices,
4

~essage Authentication Code, 7
~u1tiplicative inverse, 25, 27

Non-repudiation, 99

Oakley Key Exchange, 129
One-time pad, 6

Passive attack, 9
Permutation cipher, 3
Pipe lining, 10
Polyalphabetic substitution

cipher, 3
Polynomial representation, 21
Power Analysis, 10
Power Analysis Attack, 10
Product cipher, 15
Public Key algorithm, 5

RC6, 2, 7, 14, 15, 16, 18, 19,20,
21,27

Rcon Function, 68
Rem Function, 68
Replay Protection, 101
Reusability, 88
Rijndael CBC Mode, 85
Rijndael CFB Mode, 85
Rijndael ECB Mode, 85
Rijndael Key Schedule, 61
Rijndael OFB Mode, 85
Rijndael Round, 59
Rotor machines, 4

RotWord Function, 68
RSA,5

Secure Electronic Transaction
Protocol, 115

Secure Socket Layer Protocol,
115

Serpent, 2, 7, 14, 15, 17, 18, 19,
20,21,27

SHA-l, 105, 108, 114
SHA-384, 117, 119, 151
SHA-512, 117, 119, 151
Skeme Key Exchange, 129
Sub-Pipelining, 10
Substitution Cipher, 2
Substitution-Permutation cipher,

15
Sub Word Function, 68
Symmetric algorithm, 6

TDEA. See Triple-DES
Timing Attack, 9
Transport Layer Security

Protocol, 115
Transposition Cipher, 3
Triple-DES, 37
Twofish, 2, 7, 14, 15, 16, 18, 19,

20,21,27

Vemam cipher, 6
Vigenere cipher, 3

Wired Equivalent Privacy
Protocol, 116

Wireless Transport Layer Security
Protocol, 116

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

